LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
- URL: http://arxiv.org/abs/2406.05881v2
- Date: Sun, 16 Jun 2024 10:28:45 GMT
- Title: LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
- Authors: Utsav Singh, Pramit Bhattacharyya, Vinay P. Namboodiri,
- Abstract summary: We propose a novel HRL framework that leverages language instructions to generate a stationary reward function for a higher-level policy.
Since the language-guided reward is unaffected by the lower primitive behaviour, LGR2 mitigates non-stationarity.
Our approach attains success rates exceeding 70$%$ in challenging, sparse-reward robotic navigation and manipulation environments.
- Score: 22.99690700210957
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Developing interactive systems that leverage natural language instructions to solve complex robotic control tasks has been a long-desired goal in the robotics community. Large Language Models (LLMs) have demonstrated exceptional abilities in handling complex tasks, including logical reasoning, in-context learning, and code generation. However, predicting low-level robotic actions using LLMs poses significant challenges. Additionally, the complexity of such tasks usually demands the acquisition of policies to execute diverse subtasks and combine them to attain the ultimate objective. Hierarchical Reinforcement Learning (HRL) is an elegant approach for solving such tasks, which provides the intuitive benefits of temporal abstraction and improved exploration. However, HRL faces the recurring issue of non-stationarity due to unstable lower primitive behaviour. In this work, we propose LGR2, a novel HRL framework that leverages language instructions to generate a stationary reward function for the higher-level policy. Since the language-guided reward is unaffected by the lower primitive behaviour, LGR2 mitigates non-stationarity and is thus an elegant method for leveraging language instructions to solve robotic control tasks. To analyze the efficacy of our approach, we perform empirical analysis and demonstrate that LGR2 effectively alleviates non-stationarity in HRL. Our approach attains success rates exceeding 70$\%$ in challenging, sparse-reward robotic navigation and manipulation environments where the baselines fail to achieve any significant progress. Additionally, we conduct real-world robotic manipulation experiments and demonstrate that CRISP shows impressive generalization in real-world scenarios.
Related papers
- InCoRo: In-Context Learning for Robotics Control with Feedback Loops [4.702566749969133]
InCoRo is a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot.
We highlight the generalization capabilities of our system and show that InCoRo surpasses the prior art in terms of the success rate.
This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.
arXiv Detail & Related papers (2024-02-07T19:01:11Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
We present CRISP, a novel HRL algorithm that generates a curriculum of achievable subgoals for evolving lower-level primitives.
CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations.
We demonstrate that CRISP demonstrates impressive generalization in real world scenarios.
arXiv Detail & Related papers (2023-04-07T08:22:50Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.