論文の概要: Neural-g: A Deep Learning Framework for Mixing Density Estimation
- arxiv url: http://arxiv.org/abs/2406.05986v1
- Date: Mon, 10 Jun 2024 03:00:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:06:21.973707
- Title: Neural-g: A Deep Learning Framework for Mixing Density Estimation
- Title(参考訳): Neural-g: 混合密度推定のためのディープラーニングフレームワーク
- Authors: Shijie Wang, Saptarshi Chakraborty, Qian Qin, Ray Bai,
- Abstract要約: 混合(または先行)密度推定は、機械学習と統計学において重要な問題である。
本稿では,新しいニューラルネットワークを用いたモデリング手法であるNeural-$g$を提案する。
- 参考スコア(独自算出の注目度): 16.464806944964003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixing (or prior) density estimation is an important problem in machine learning and statistics, especially in empirical Bayes $g$-modeling where accurately estimating the prior is necessary for making good posterior inferences. In this paper, we propose neural-$g$, a new neural network-based estimator for $g$-modeling. Neural-$g$ uses a softmax output layer to ensure that the estimated prior is a valid probability density. Under default hyperparameters, we show that neural-$g$ is very flexible and capable of capturing many unknown densities, including those with flat regions, heavy tails, and/or discontinuities. In contrast, existing methods struggle to capture all of these prior shapes. We provide justification for neural-$g$ by establishing a new universal approximation theorem regarding the capability of neural networks to learn arbitrary probability mass functions. To accelerate convergence of our numerical implementation, we utilize a weighted average gradient descent approach to update the network parameters. Finally, we extend neural-$g$ to multivariate prior density estimation. We illustrate the efficacy of our approach through simulations and analyses of real datasets. A software package to implement neural-$g$ is publicly available at https://github.com/shijiew97/neuralG.
- Abstract(参考訳): 混合(または先行)密度推定は、機械学習と統計学において重要な問題であり、特に実験的なベイズ$g$-modelingでは、適切な後部推論を行うためには、事前を正確に推定する必要がある。
本稿では,新しいニューラルネットワークを用いたモデリング手法であるNeural-$g$を提案する。
Neural-g$は、推定された事前が有効な確率密度であることを保証するために、ソフトマックス出力層を使用する。
デフォルトのハイパーパラメータでは、g$は非常に柔軟で、平坦な領域、重い尾、および/または不連続性を含む多くの未知の密度を捉えることができる。
対照的に、既存の手法は、これらの以前の形をすべて捉えるのに苦労している。
我々は、任意の確率質量関数を学習するニューラルネットワークの能力に関する、新しい普遍近似定理を確立することにより、ニューラル=g$の正当化を提供する。
数値的な実装の収束を加速するために、重み付き平均勾配降下法を用いて、ネットワークパラメータを更新する。
最後に、ニューラル=$g$を拡張し、事前密度推定を多変量化する。
本稿では,実データセットのシミュレーションと解析によるアプローチの有効性について述べる。
Neural-g$を実装するソフトウェアパッケージはhttps://github.com/shijiew97/neuralG.comで公開されている。
関連論文リスト
- Fast, Distribution-free Predictive Inference for Neural Networks with
Coverage Guarantees [25.798057062452443]
本稿では,予測推論(PI)のための新しい計算効率アルゴリズムを提案する。
データに対する分布的な仮定は不要で、ニューラルネットワークの既存のブートストラップ方式よりも高速に計算できる。
論文 参考訳(メタデータ) (2023-06-11T04:03:58Z) - Normalization effects on deep neural networks [20.48472873675696]
ニューラルネットワークの出力の統計的挙動に対する$gamma_i$の選択の影響について検討する。
ニューラルネットワークの出力とテスト精度のばらつきの観点からは、$gamma_i$sを1にすることを選択すべきである。
論文 参考訳(メタデータ) (2022-09-02T17:05:55Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Does Preprocessing Help Training Over-parameterized Neural Networks? [19.64638346701198]
我々は,$Omega(mnd)$バリアをバイパスする2つの新しい前処理手法を提案する。
本研究は,これまでに確立された高速訓練法について理論的考察を行った。
論文 参考訳(メタデータ) (2021-10-09T18:16:23Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
変動制約のあるニューラルネットワークのクラスは、任意に小さな定数$delta$に対して、ほぼパラメトリックレート$n-1/2+delta$を達成することができることを示す。
その結果、滑らかな関数の近似に必要な神経機能空間は、しばしば知覚されるものほど大きくない可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-22T21:28:00Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。