Thanking the World: Exploring Gender-Based Differences in Acknowledgment Patterns and Support Systems in Theses
- URL: http://arxiv.org/abs/2406.06006v1
- Date: Mon, 10 Jun 2024 04:06:55 GMT
- Title: Thanking the World: Exploring Gender-Based Differences in Acknowledgment Patterns and Support Systems in Theses
- Authors: Manika Lamba, Hendrik Erz,
- Abstract summary: This paper investigates the sources of support for male and female researchers in completing their master's or doctoral theses.
We utilize a novel method of extracting the various types of support systems that are acknowledged in 1252 ETDs using RoBERTa-based models.
- Score: 0.0
- License:
- Abstract: Research on acknowledgment sections of scientific papers has gained significant attention, but there remains a dearth of studies examining acknowledgments in the context of Electronic Theses and Dissertations. This paper addresses this gap by investigating the sources of support for male and female researchers in completing their master's or doctoral theses, focusing on the discipline of Library and Information Science. We utilize a novel method of extracting the various types of support systems that are acknowledged in 1252 ETDs using RoBERTa-based models. The most prominent forms of support acknowledged by researchers are academic, moral, financial, and religious support. While there are no significant gender-based differences in religious and financial support, the ratio of academic to moral support acknowledged by researchers shows strong gender-based variation. Additionally, advisors display a preference for supervising same-gender researchers. By comprehending the nuances of support systems and the unique challenges faced by researchers of different genders, we can foster a more inclusive and supportive academic environment. The insights gained from this research have implications for improving mentoring practices and promoting gender equality in academia.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Revisiting gender bias research in bibliometrics: Standardizing methodological variability using Scholarly Data Analysis (SoDA) Cards [4.7078204693473795]
We propose the development and implementation of Scholarly Data Analysis (SoDA) Cards.
These cards will provide a structured framework for documenting and reporting key methodological choices in scholarly data analysis.
arXiv Detail & Related papers (2025-01-30T04:22:50Z) - Gender assignment in doctoral theses: revisiting Teseo with a method based on cultural consensus theory [0.0]
This study critically evaluates gender assignment methods within academic contexts.
The research introduces nomquamgender, a cultural consensus-based method, and applies it to Teseo, a Spanish dissertation database.
arXiv Detail & Related papers (2025-01-20T15:22:01Z) - Gender Disparities in Contributions, Leadership, and Collaboration: An Exploratory Study on Software Systems Research [1.8049331600471712]
We analyzed 2,000 articles published over the past decade in the Journal of Systems and Software.
Our analysis showed that only 32.74% of the total authors are women and female-led or supervised studies were fewer than those of men.
Third, we explored the areas of software systems research and found that female authors are more actively involved in human-centric research domains.
arXiv Detail & Related papers (2024-12-20T08:20:23Z) - Divided by discipline? A systematic literature review on the quantification of online sexism and misogyny using a semi-automated approach [1.1599570446840546]
We present a semi-automated way to narrow down the search results in the different phases of selection stage in the PRISMA flowchart.
We examine literature from computer science and the social sciences from 2012 to 2022.
We discuss the challenges and opportunities for future research dedicated to measuring online sexism and misogyny.
arXiv Detail & Related papers (2024-09-30T11:34:39Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
We evaluate three large language models (LLMs) for their alignment with human narrative styles and potential gender biases.
Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases.
arXiv Detail & Related papers (2024-06-27T19:26:11Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Position: AI/ML Influencers Have a Place in the Academic Process [82.2069685579588]
We investigate the role of social media influencers in enhancing the visibility of machine learning research.
We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023.
Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers.
arXiv Detail & Related papers (2024-01-24T20:05:49Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Assessing Gender Bias in the Information Systems Field: An Analysis of
the Impact on Citations [0.0]
This paper outlines a study to estimate the impact of scholarly citations that female IS academics accumulate vis-a-vis their male colleagues.
By doing so we propose to contribute knowledge on a core dimension of gender bias in academia, which is, so far, almost completely unexplored in the IS field.
arXiv Detail & Related papers (2021-08-22T18:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.