Gender Disparities in Contributions, Leadership, and Collaboration: An Exploratory Study on Software Systems Research
- URL: http://arxiv.org/abs/2412.15661v1
- Date: Fri, 20 Dec 2024 08:20:23 GMT
- Title: Gender Disparities in Contributions, Leadership, and Collaboration: An Exploratory Study on Software Systems Research
- Authors: Shamse Tasnim Cynthia, Saikat Mondal, Joy Krishan Das, Banani Roy,
- Abstract summary: We analyzed 2,000 articles published over the past decade in the Journal of Systems and Software.
Our analysis showed that only 32.74% of the total authors are women and female-led or supervised studies were fewer than those of men.
Third, we explored the areas of software systems research and found that female authors are more actively involved in human-centric research domains.
- Score: 1.8049331600471712
- License:
- Abstract: Gender diversity enhances research by bringing diverse perspectives and innovative approaches. It ensures equitable solutions that address the needs of diverse populations. However, gender disparity persists in research where women remain underrepresented, which might limit diversity and innovation. Many even leave scientific careers as their contributions often go unnoticed and undervalued. Therefore, understanding gender-based contributions and collaboration dynamics is crucial to addressing this gap and creating a more inclusive research environment. In this study, we analyzed 2,000 articles published over the past decade in the Journal of Systems and Software (JSS). From these, we selected 384 articles that detailed authors' contributions and contained both female and male authors to investigate gender-based contributions. Our contributions are fourfold. First, we analyzed women's engagement in software systems research. Our analysis showed that only 32.74% of the total authors are women and female-led or supervised studies were fewer than those of men. Second, we investigated female authors' contributions across 14 major roles. Interestingly, we found that women contributed comparably to men in most roles, with more contributions in conceptualization, writing, and reviewing articles. Third, we explored the areas of software systems research and found that female authors are more actively involved in human-centric research domains. Finally, we analyzed gender-based collaboration dynamics. Our findings revealed that female supervisors tended to collaborate locally more often than national-level collaborations. Our study highlights that females' contributions to software systems research are comparable to those of men. Therefore, the barriers need to be addressed to enhance female participation and ensure equity and inclusivity in research.
Related papers
- Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
We study gender bias in 22 popular image-to-text vision-language assistants (VLAs)
Our results show that VLAs replicate human biases likely present in the data, such as real-world occupational imbalances.
To eliminate the gender bias in these models, we find that finetuning-based debiasing methods achieve the best tradeoff between debiasing and retaining performance on downstream tasks.
arXiv Detail & Related papers (2024-10-25T05:59:44Z) - Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts [49.97673761305336]
We evaluate three large language models (LLMs) for their alignment with human narrative styles and potential gender biases.
Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases.
arXiv Detail & Related papers (2024-06-27T19:26:11Z) - Thanking the World: Exploring Gender-Based Differences in Acknowledgment Patterns and Support Systems in Theses [0.0]
This paper investigates the sources of support for male and female researchers in completing their master's or doctoral theses.
We utilize a novel method of extracting the various types of support systems that are acknowledged in 1252 ETDs using RoBERTa-based models.
arXiv Detail & Related papers (2024-06-10T04:06:55Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - Gender Inequalities: Women Researchers Require More Knowledge in
Specific and Experimental Topics [1.4916971861796386]
This study analyzes the relationship between regional and gender identities, topics, and knowledge status.
We find that gender inequalities are merged with both regional-specific characteristics and global common patterns.
arXiv Detail & Related papers (2023-09-05T05:36:06Z) - Exploring the Confounding Factors of Academic Career Success: An
Empirical Study with Deep Predictive Modeling [43.91066315776696]
We propose to explore the determinants of academic career success through an empirical and predictive modeling perspective.
We analyze the co-author network and find that potential scholars work closely with influential scholars early on and more closely as they grow.
We find that being a Fellow could not bring the improvements of citations and productivity growth.
arXiv Detail & Related papers (2022-11-19T08:16:21Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Women, artificial intelligence, and key positions in collaboration
networks: Towards a more equal scientific ecosystem [0.0]
This study investigates the effects of several driving factors on acquiring key positions in scientific collaboration networks through a gender lens.
It was found that, regardless of gender, scientific performance in terms of quantity and impact plays a crucial in possessing the "social researcher" in the network.
arXiv Detail & Related papers (2022-05-19T15:15:04Z) - Investigating writing style as a contributor to gender gaps in science and technology [0.0]
We find significant differences in writing style by gender, with women using more involved features in their writing.
Papers and patents with more involved features also tend to be cited more by women.
Our findings suggest that scientific text is not devoid of personal character, which could contribute to bias in evaluation.
arXiv Detail & Related papers (2022-04-28T22:33:36Z) - The effect of the COVID-19 pandemic on gendered research productivity
and its correlates [0.0]
This study examined how the proportion of female authors in academic journals on a global scale changed in 2020.
We observed a decrease in research productivity for female researchers in 2020, mostly as first authors, followed by last author position.
Female researchers were not necessarily excluded from but were marginalised in research.
arXiv Detail & Related papers (2021-11-29T06:20:44Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
We compare the content of a women-oriented magazine with that of a men-oriented one, both produced by the same editorial group over a decade.
With Topic Modelling techniques we identify the main themes discussed in the magazines and quantify how much the presence of these topics differs between magazines over time.
Our results show that the frequency of appearance of the topics Family, Business and Women as sex objects, present an initial bias that tends to disappear over time.
arXiv Detail & Related papers (2020-11-24T14:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.