論文の概要: FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography
- arxiv url: http://arxiv.org/abs/2406.06386v1
- Date: Mon, 10 Jun 2024 15:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:18:57.730433
- Title: FPN-IAIA-BL: A Multi-Scale Interpretable Deep Learning Model for Classification of Mass Margins in Digital Mammography
- Title(参考訳): FPN-IAIA-BL:デジタルマンモグラフィーにおけるマスマージン分類のためのマルチスケール解釈可能な深層学習モデル
- Authors: Julia Yang, Alina Jade Barnett, Jon Donnelly, Satvik Kishore, Jerry Fang, Fides Regina Schwartz, Chaofan Chen, Joseph Y. Lo, Cynthia Rudin,
- Abstract要約: 解釈不能なディープラーニングモデルは、高度な環境には適さない。
コンピュータビジョンの解釈における最近の研究は、かつてのブラックボックスに対して透明性を提供する。
本稿では,マンモグラフィマスマージン分類のための多段階解釈型深層学習モデルを提案する。
- 参考スコア(独自算出の注目度): 17.788748860485438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital mammography is essential to breast cancer detection, and deep learning offers promising tools for faster and more accurate mammogram analysis. In radiology and other high-stakes environments, uninterpretable ("black box") deep learning models are unsuitable and there is a call in these fields to make interpretable models. Recent work in interpretable computer vision provides transparency to these formerly black boxes by utilizing prototypes for case-based explanations, achieving high accuracy in applications including mammography. However, these models struggle with precise feature localization, reasoning on large portions of an image when only a small part is relevant. This paper addresses this gap by proposing a novel multi-scale interpretable deep learning model for mammographic mass margin classification. Our contribution not only offers an interpretable model with reasoning aligned with radiologist practices, but also provides a general architecture for computer vision with user-configurable prototypes from coarse- to fine-grained prototypes.
- Abstract(参考訳): 乳がん検出にはデジタルマンモグラフィーが不可欠であり、ディープラーニングはより高速で正確なマンモグラフィー解析のための有望なツールを提供する。
ラジオロジーや他の高感度環境では、解釈不能な(ブラックボックス)ディープラーニングモデルは不適当であり、解釈不能なモデルを作成するためにこれらの分野にコールがある。
コンピュータビジョンを解釈する最近の研究は、ケースベースの説明のためのプロトタイプを活用し、マンモグラフィーなどのアプリケーションで高い精度を達成することによって、これらの以前のブラックボックスに対して透明性を提供する。
しかし、これらのモデルでは、小さな部分だけが関係している場合、画像の大部分を推論する、正確な特徴ローカライゼーションに苦慮している。
本稿では,マンモグラフィ・マス・マージン分類のための新しいマルチスケール解釈可能な深層学習モデルを提案する。
我々の貢献は、ラジオロジストの実践に沿った推論を伴う解釈可能なモデルを提供するだけでなく、ユーザ設定可能なプロトタイプを粗いプロトタイプからきめ細かいプロトタイプまで、コンピュータビジョンのための一般的なアーキテクチャも提供する。
関連論文リスト
- Multi-Conditioned Denoising Diffusion Probabilistic Model (mDDPM) for Medical Image Synthesis [22.0080610434872]
アノテーションを用いた合成画像の制御生成フレームワークを提案する。
本手法は, 解剖学的に忠実に表現できる, 注記式肺CT画像を作成することができることを示す。
本実験は, この自然の制御された生成フレームワークが, ほぼすべての最先端画像生成モデルを超えることを実証した。
論文 参考訳(メタデータ) (2024-09-07T01:19:02Z) - COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - MASSM: An End-to-End Deep Learning Framework for Multi-Anatomy Statistical Shape Modeling Directly From Images [1.9029890402585894]
複数の解剖を同時にローカライズし、人口レベルの統計表現を推定し、画像空間内での形状表現を直接記述する新しいエンドツーエンドディープラーニングフレームワークであるMASSMを紹介する。
以上の結果から,マルチタスクネットワークを介して画像空間の解剖を記述し,複数の解剖処理を行うMASSMは,医用画像処理タスクのセグメンテーションネットワークよりも優れた形状情報を提供することがわかった。
論文 参考訳(メタデータ) (2024-03-16T20:16:37Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - In-context learning enables multimodal large language models to classify
cancer pathology images [0.7085801706650957]
言語処理では、コンテキスト内学習(in-context learning)は、モデルがプロンプト内で学習し、パラメータ更新の必要性を回避できる代替手段を提供する。
そこで本研究では,GPT-4V(Generative Pretrained Transformer 4 with Vision (GPT-4V)) を用いたがん画像処理モデルの評価を行った。
この結果から,テキスト内学習は特定のタスクで訓練された特殊なニューラルネットワークに適合したり,あるいは性能を向上するのに十分であり,最小限のサンプルしか必要としないことがわかった。
論文 参考訳(メタデータ) (2024-03-12T08:34:34Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - IAIA-BL: A Case-based Interpretable Deep Learning Model for
Classification of Mass Lesions in Digital Mammography [20.665935997959025]
機械学習モデルの解釈性は、高リスク決定において重要である。
機械学習に基づくマンモグラフィを解釈可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-23T05:00:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。