A Large Language Model Pipeline for Breast Cancer Oncology
- URL: http://arxiv.org/abs/2406.06455v2
- Date: Thu, 13 Jun 2024 18:48:17 GMT
- Title: A Large Language Model Pipeline for Breast Cancer Oncology
- Authors: Tristen Pool, Dennis Trujillo,
- Abstract summary: State-of-the-art OpenAI models were fine-tuned on a clinical dataset and clinical guidelines text corpus for two important cancer treatment factors.
A high accuracy (0.85+) was achieved in the classification of adjuvant radiation therapy and chemotherapy for breast cancer patients.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated potential in the innovation of many disciplines. However, how they can best be developed for oncology remains underdeveloped. State-of-the-art OpenAI models were fine-tuned on a clinical dataset and clinical guidelines text corpus for two important cancer treatment factors, adjuvant radiation therapy and chemotherapy, using a novel Langchain prompt engineering pipeline. A high accuracy (0.85+) was achieved in the classification of adjuvant radiation therapy and chemotherapy for breast cancer patients. Furthermore, a confidence interval was formed from observational data on the quality of treatment from human oncologists to estimate the proportion of scenarios in which the model must outperform the original oncologist in its treatment prediction to be a better solution overall as 8.2% to 13.3%. Due to indeterminacy in the outcomes of cancer treatment decisions, future investigation, potentially a clinical trial, would be required to determine if this threshold was met by the models. Nevertheless, with 85% of U.S. cancer patients receiving treatment at local community facilities, these kinds of models could play an important part in expanding access to quality care with outcomes that lie, at minimum, close to a human oncologist.
Related papers
- Cancer-Answer: Empowering Cancer Care with Advanced Large Language Models [0.0]
Gastrointestinal (GI) tract cancers account for a substantial portion of the global cancer burden.
Cancer-related queries are crucial for timely diagnosis, treatment, and patient education.
We leverage large language models (LLMs) such as GPT-3.5 Turbo to generate accurate, contextually relevant responses to cancer-related queries.
arXiv Detail & Related papers (2024-11-11T12:54:22Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool [0.40205899806543505]
Deep-BCR-Auto is a deep learning-based computational pathology approach that predicts breast cancer recurrence risk.
Our methodology was validated on two independent cohorts.
Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories.
arXiv Detail & Related papers (2024-09-23T19:22:06Z) - Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
We report a mixture-of-modality-experts model (MOME) that integrates multiparametric MRI information within a unified structure.
MOME demonstrated accurate and robust identification of breast cancer.
It could reduce the need for biopsies in BI-RADS 4 patients with a ratio of 7.3%, classify triple-negative breast cancer with an AUROC of 0.709, and predict pathological complete response to neoadjuvant chemotherapy with an AUROC of 0.694.
arXiv Detail & Related papers (2024-08-08T05:04:13Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.