論文の概要: Random Features Approximation for Control-Affine Systems
- arxiv url: http://arxiv.org/abs/2406.06514v2
- Date: Tue, 11 Jun 2024 02:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 10:07:31.126584
- Title: Random Features Approximation for Control-Affine Systems
- Title(参考訳): 制御アフィン系に対するランダム特徴近似
- Authors: Kimia Kazemian, Yahya Sattar, Sarah Dean,
- Abstract要約: 制御アフィン構造をキャプチャする非線形特徴表現の2つの新しいクラスを提案する。
提案手法はランダムな特徴(RF)近似を用いて,より少ない計算コストでカーネル手法の表現性を継承する。
- 参考スコア(独自算出の注目度): 6.067043299145924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern data-driven control applications call for flexible nonlinear models that are amenable to principled controller synthesis and realtime feedback. Many nonlinear dynamical systems of interest are control affine. We propose two novel classes of nonlinear feature representations which capture control affine structure while allowing for arbitrary complexity in the state dependence. Our methods make use of random features (RF) approximations, inheriting the expressiveness of kernel methods at a lower computational cost. We formalize the representational capabilities of our methods by showing their relationship to the Affine Dot Product (ADP) kernel proposed by Casta\~neda et al. (2021) and a novel Affine Dense (AD) kernel that we introduce. We further illustrate the utility by presenting a case study of data-driven optimization-based control using control certificate functions (CCF). Simulation experiments on a double pendulum empirically demonstrate the advantages of our methods.
- Abstract(参考訳): 現代のデータ駆動制御アプリケーションは、原理化されたコントローラ合成とリアルタイムフィードバックに適する柔軟な非線形モデルを求めている。
多くの非線形力学系は制御アフィンである。
本稿では,制御アフィン構造を捉える非線形特徴表現のクラスを2つ提案する。
提案手法はランダムな特徴(RF)近似を用いて,より少ない計算コストでカーネル手法の表現性を継承する。
本稿では,Casta\~neda et al (2021) が提案する Affine Dot Product (ADP) カーネルと,導入した新しい Affine Dense (AD) カーネルとの関係を示すことで,本手法の表現能力を定式化する。
さらに、制御証明書関数(CCF)を用いたデータ駆動最適化に基づく制御のケーススタディを示す。
二重振り子のシミュレーション実験は,本手法の利点を実証的に実証した。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings [3.007066256364399]
制御拡散過程に関連するマルコフ遷移作用素を特定するためにカーネル平均埋め込み(KME)を導入する。
従来の動的プログラミング手法とは異なり、我々の手法はカーネルトリックを利用して次元の呪いを破る。
本手法の有効性を数値的な例で示し, 非線形最適制御問題を解く能力を強調した。
論文 参考訳(メタデータ) (2024-07-23T11:53:03Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Sample-efficient Model-based Reinforcement Learning for Quantum Control [0.2999888908665658]
ノイズの多い時間依存ゲート最適化のためのモデルベース強化学習(RL)手法を提案する。
標準モデルフリーRLに比べて,本手法のサンプル複雑性において,桁違いの優位性を示す。
提案アルゴリズムは,部分的特徴付き1量子ビット系と2量子ビット系の制御に適している。
論文 参考訳(メタデータ) (2023-04-19T15:05:19Z) - Learning Control-Oriented Dynamical Structure from Data [25.316358215670274]
一般非線形制御アフィン系に対する状態依存非線形トラッキングコントローラの定式化について論じる。
安定軌跡追跡における学習版の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2023-02-06T02:01:38Z) - Model-Based Reinforcement Learning via Stochastic Hybrid Models [39.83837705993256]
本稿では非線形モデリングと制御のハイブリッドシステムビューを採用する。
本稿では,データの時間的構造を捉えるシーケンスモデリングパラダイムについて考察する。
これらの時系列モデルは,ローカルフィードバックコントローラの抽出に使用するクローズドループ拡張を自然に認めていることを示す。
論文 参考訳(メタデータ) (2021-11-11T14:05:46Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Technical Report: Adaptive Control for Linearizable Systems Using
On-Policy Reinforcement Learning [41.24484153212002]
本稿では,未知システムに対するフィードバック線形化に基づくトラッキング制御系を適応的に学習するフレームワークを提案する。
学習した逆モデルがすべての時点において可逆である必要はない。
二重振り子の模擬例は、提案された理論の有用性を示している。
論文 参考訳(メタデータ) (2020-04-06T15:50:31Z) - Formal Synthesis of Lyapunov Neural Networks [61.79595926825511]
本稿では,リアプノフ関数の自動合成法を提案する。
我々は,数値学習者と記号検証器が相互作用して,確実に正しいリアプノフニューラルネットワークを構築する,反例誘導方式を採用する。
提案手法は,Lyapunov関数を他の手法よりも高速かつ広い空間領域で合成する。
論文 参考訳(メタデータ) (2020-03-19T17:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。