Expressive Symbolic Regression for Interpretable Models of Discrete-Time Dynamical Systems
- URL: http://arxiv.org/abs/2406.06585v1
- Date: Wed, 5 Jun 2024 05:05:29 GMT
- Title: Expressive Symbolic Regression for Interpretable Models of Discrete-Time Dynamical Systems
- Authors: Adarsh Iyer, Nibodh Boddupalli, Jeff Moehlis,
- Abstract summary: Symbolic Artificial Neural Network-Trained Expressions (SymANNTEx) architecture for this task.
We show that our modified SymANNTEx model properly identifies single-state maps and achieves moderate success in approximating a dual-state attractor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Interpretable mathematical expressions defining discrete-time dynamical systems (iterated maps) can model many phenomena of scientific interest, enabling a deeper understanding of system behaviors. Since formulating governing expressions from first principles can be difficult, it is of particular interest to identify expressions for iterated maps given only their data streams. In this work, we consider a modified Symbolic Artificial Neural Network-Trained Expressions (SymANNTEx) architecture for this task, an architecture more expressive than others in the literature. We make a modification to the model pipeline to optimize the regression, then characterize the behavior of the adjusted model in identifying several classical chaotic maps. With the goal of parsimony, sparsity-inducing weight regularization and information theory-informed simplification are implemented. We show that our modified SymANNTEx model properly identifies single-state maps and achieves moderate success in approximating a dual-state attractor. These performances offer significant promise for data-driven scientific discovery and interpretation.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Interpreting Temporal Graph Neural Networks with Koopman Theory [9.088336125738385]
We introduce an explainability approach for temporal graphs.
We present two methods to interpret the STGNN's decision process.
We show how our methods can correctly identify interpretable features such as infection times and infected nodes in the context of dissemination processes.
arXiv Detail & Related papers (2024-10-17T11:56:33Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
We discuss which types of models are usually combined and propose a model interface that is capable of expressing a variety of mixed equation based models.
We propose a new wildcard topology, that is capable of describing the generic connection between two combined models in an easy to interpret fashion.
The contributions of this paper are highlighted at a proof of concept: Different connection topologies between two models are learned, interpreted and compared.
arXiv Detail & Related papers (2024-06-12T11:17:11Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors.
Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by graph neural networks (GNNs)
We propose a new approach named Prototypical Graph ODE to address the problem.
arXiv Detail & Related papers (2023-11-11T12:04:47Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Discovering interpretable elastoplasticity models via the neural
polynomial method enabled symbolic regressions [0.0]
Conventional neural network elastoplasticity models are often perceived as lacking interpretability.
This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts.
arXiv Detail & Related papers (2023-07-24T22:22:32Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Lossless Compression of Structured Convolutional Models via Lifting [14.63152363481139]
We introduce a simple and efficient technique to detect the symmetries and compress the neural models without loss of any information.
We demonstrate through experiments that such compression can lead to significant speedups of structured convolutional models.
arXiv Detail & Related papers (2020-07-13T08:02:27Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
We propose a powerful and equivariant message-passing framework based on two ideas.
First, we propagate a one-hot encoding of the nodes, in addition to the features, in order to learn a local context matrix around each node.
Second, we propose methods for the parametrization of the message and update functions that ensure permutation equivariance.
arXiv Detail & Related papers (2020-06-26T17:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.