論文の概要: HORAE: A Domain-Agnostic Modeling Language for Automating Multimodal Service Regulation
- arxiv url: http://arxiv.org/abs/2406.06600v1
- Date: Thu, 6 Jun 2024 13:44:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 21:14:20.610346
- Title: HORAE: A Domain-Agnostic Modeling Language for Automating Multimodal Service Regulation
- Title(参考訳): HORAE:マルチモーダルサービス規制を自動化するドメインに依存しないモデリング言語
- Authors: Yutao Sun, Mingshuai Chen, Kangjia Zhao, He Li, Jintao Chen, Linyu Yang, Zhongyi Wang, Tiancheng Zhao, Jianwei Yin,
- Abstract要約: この研究は、マルチモーダル規則をモデル化するための統一仕様言語であるHORAEの設計原則を提示する。
HORAEは、HORAEという名前の細調整された大規模言語モデルをさらに活用することで、インテリジェントなサービス規制パイプラインを促進する方法を示す。
- 参考スコア(独自算出の注目度): 24.05741059881381
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence is rapidly encroaching on the field of service regulation. This work presents the design principles behind HORAE, a unified specification language to model multimodal regulation rules across a diverse set of domains. We show how HORAE facilitates an intelligent service regulation pipeline by further exploiting a fine-tuned large language model named HORAE that automates the HORAE modeling process, thereby yielding an end-to-end framework for fully automated intelligent service regulation.
- Abstract(参考訳): 人工知能は、サービス規制の分野に急速に浸透している。
この研究は、多様なドメインからなるマルチモーダル規制ルールをモデル化するための統一仕様言語であるHORAEの設計原則を提示する。
我々は、HORAEモデリングプロセスを自動化するHORAEという名前の細調整された大規模言語モデルをさらに活用することにより、HORAEがインテリジェントなサービス規制パイプラインを促進する方法を示し、完全に自動化されたインテリジェントなサービス規制のためのエンドツーエンドのフレームワークを提供する。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Synergy of Large Language Model and Model Driven Engineering for Automated Development of Centralized Vehicular Systems [2.887732304499794]
モデル駆動工学(MDE)とLarge Language Models(LLM)の相乗効果を利用したツールのプロトタイプを提案する。
CARLAシミュレータを用いて、緊急ブレーキのシナリオにおいて、生成されたコードをシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2024-04-08T13:28:11Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
本稿では,車載ソフトウェアシステムの開発における,新しいモデルと特徴に基づくアプローチを提案する。
提案されたアプローチの重要なポイントの1つは、近代的な生成AI、特にLarge Language Models(LLM)の導入である。
その結果、パイプラインは広範囲に自動化され、各ステップでフィードバックが生成される。
論文 参考訳(メタデータ) (2024-03-21T15:07:57Z) - Lemur: Integrating Large Language Models in Automated Program Verification [10.221822902660458]
自動プログラム検証のためのLLMと自動推論器のパワーを組み合わせるための一般的な手法を提案する。
本稿では,音声自動検証手法として計算をインスタンス化し,一連の合成および競合ベンチマークの実践的改善を実証する。
論文 参考訳(メタデータ) (2023-10-07T16:44:53Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - A No-Code Low-Code Paradigm for Authoring Business Automations Using
Natural Language [9.03354980024123]
自然言語を用いたビジネスオートメーション構築のためのパラダイムを提案する。
このアプローチは、自然言語で記述されたビジネスルールと自動化を翻訳するために、大きな言語モデルを適用します。
論文 参考訳(メタデータ) (2022-07-15T19:17:55Z) - Sparse*BERT: Sparse Models Generalize To New tasks and Domains [79.42527716035879]
本稿では, 階層的非構造的マグニチュード・プルーニング(Gradual Unstructured Magnitude Pruning)を用いて, ドメイン間およびタスク間を移動可能なモデルについて検討する。
Sparse*BERTは、非構造化バイオメディカルテキスト上で圧縮されたアーキテクチャを事前学習することで、SparseBioBERTとなることを示す。
論文 参考訳(メタデータ) (2022-05-25T02:51:12Z) - IFC models for (semi)automating common planning checks for building
permits [0.0]
IFCモデルから必要な情報を抽出して代表規則をチェックするツールが開発された。
ケーススタディは、場所、規制、入力モデルに特化していますが、遭遇した問題のタイプは、自動コードコンプライアンスチェックの一般的な例です。
論文 参考訳(メタデータ) (2020-11-03T15:29:47Z) - VEGA: Towards an End-to-End Configurable AutoML Pipeline [101.07003005736719]
VEGAは効率よく包括的なAutoMLフレームワークで、複数のハードウェアプラットフォームに互換性があり、最適化されている。
VEGAは既存のAutoMLアルゴリズムを改善し、SOTAメソッドに対して新しい高性能モデルを発見する。
論文 参考訳(メタデータ) (2020-11-03T06:53:53Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
FewShotWozは,タスク指向対話システムにおける数ショットの学習設定をシミュレートする最初の NLG ベンチマークである。
我々は, SC-GPTモデルを開発し, その制御可能な生成能力を得るために, 注釈付きNLGコーパスの大規模なセットで事前学習を行った。
FewShotWozとMulti-Domain-WOZデータセットの実験は、提案したSC-GPTが既存の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2020-02-27T18:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。