論文の概要: Synthetic Query Generation using Large Language Models for Virtual Assistants
- arxiv url: http://arxiv.org/abs/2406.06729v1
- Date: Mon, 10 Jun 2024 18:50:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:25:28.287120
- Title: Synthetic Query Generation using Large Language Models for Virtual Assistants
- Title(参考訳): 仮想アシスタントのための大規模言語モデルを用いた合成クエリ生成
- Authors: Sonal Sannigrahi, Thiago Fraga-Silva, Youssef Oualil, Christophe Van Gysel,
- Abstract要約: 本稿では,テンプレートベースの手法を補完する合成クエリを生成するために,LLM(Large Language Models)の利用について検討する。
LLMはテンプレートベースのメソッドやエンティティ固有の参照アスペクトよりも冗長なクエリを生成する。
- 参考スコア(独自算出の注目度): 7.446599238906526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual Assistants (VAs) are important Information Retrieval platforms that help users accomplish various tasks through spoken commands. The speech recognition system (speech-to-text) uses query priors, trained solely on text, to distinguish between phonetically confusing alternatives. Hence, the generation of synthetic queries that are similar to existing VA usage can greatly improve upon the VA's abilities -- especially for use-cases that do not (yet) occur in paired audio/text data. In this paper, we provide a preliminary exploration of the use of Large Language Models (LLMs) to generate synthetic queries that are complementary to template-based methods. We investigate whether the methods (a) generate queries that are similar to randomly sampled, representative, and anonymized user queries from a popular VA, and (b) whether the generated queries are specific. We find that LLMs generate more verbose queries, compared to template-based methods, and reference aspects specific to the entity. The generated queries are similar to VA user queries, and are specific enough to retrieve the relevant entity. We conclude that queries generated by LLMs and templates are complementary.
- Abstract(参考訳): 仮想アシスタント(VA)は、ユーザーが音声コマンドで様々なタスクを遂行するのを助ける重要な情報検索プラットフォームである。
音声認識システム(speech-to-text)は、音声学的に紛らわしい代替語を区別するために、テキストのみに基づいて訓練されたクエリ先を使用する。
したがって、既存のVA使用法に類似した合成クエリの生成は、VAの能力を大幅に改善することができる。
本稿では,テンプレートベースの手法を補完する合成クエリを生成するために,Large Language Models (LLMs) の使用を予備検討する。
我々はその方法について検討する。
a) 人気のあるVAからランダムにサンプリングされた、代表された、匿名化されたユーザクエリに似たクエリを生成し、
(b) 生成されたクエリが特定のかどうか。
LLMはテンプレートベースのメソッドやエンティティ固有の参照アスペクトよりも冗長なクエリを生成する。
生成されたクエリはVAユーザクエリに似ており、関連するエンティティを取得するのに十分なものだ。
LLMとテンプレートによって生成されたクエリは相補的であると結論付けている。
関連論文リスト
- Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
そこで本研究では,質問応答システムに必要な文脈の小型化と品質向上に焦点をあてる。
私たちのゴールは、最も意味のあるドキュメントを選択し、捨てられたドキュメントをアウトリーチとして扱うことです。
その結果,質問や回答の複雑さを増大させることで,最大の改善が達成された。
論文 参考訳(メタデータ) (2024-07-01T15:53:29Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Prompting-based Synthetic Data Generation for Few-Shot Question Answering [23.97949073816028]
大規模言語モデルを用いることで,複数データセットにおける質問応答性能が向上することを示す。
言語モデルには、一般的な事前学習/微調整スキームを超えて使える貴重なタスク非依存の知識が含まれていることを示唆する。
論文 参考訳(メタデータ) (2024-05-15T13:36:43Z) - Redefining Information Retrieval of Structured Database via Large Language Models [9.65171883231521]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
提案するインタフェースは,単言語および多言語文書コレクション上での対話型クエリ生成をサポートする,新しい検索インタフェースである。
このインタフェースにより、ユーザーは異なるLCMによって生成されたクエリを洗練し、検索したドキュメントやパスに対するフィードバックを提供し、より効果的なクエリを生成するプロンプトとしてユーザーのフィードバックを組み込むことができる。
論文 参考訳(メタデータ) (2023-11-19T04:42:24Z) - MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion [39.24969189479343]
本稿では,大規模言語モデル(LLM)を相互検証に用いるゼロショットクエリ拡張フレームワークを提案する。
提案手法は完全にゼロショットであり,その有効性を示すために3つの公開ベンチマークデータセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-10-29T16:04:10Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - BERTese: Learning to Speak to BERT [50.76152500085082]
本論文では,より良い知識抽出に向けて直接最適化されたパラフレーズクエリ"BERTese"に自動書き換える手法を提案する。
私たちのアプローチが競合するベースラインを上回ることを実証的に示し、複雑なパイプラインの必要性を回避します。
論文 参考訳(メタデータ) (2021-03-09T10:17:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。