DualMamba: A Lightweight Spectral-Spatial Mamba-Convolution Network for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2406.07050v1
- Date: Tue, 11 Jun 2024 08:26:42 GMT
- Title: DualMamba: A Lightweight Spectral-Spatial Mamba-Convolution Network for Hyperspectral Image Classification
- Authors: Jiamu Sheng, Jingyi Zhou, Jiong Wang, Peng Ye, Jiayuan Fan,
- Abstract summary: We propose a novel lightweight parallel design called lightweight dual-stream Mamba-convolution network (DualMamba) for HSI classification.
Specifically, a parallel lightweight Mamba and CNN block are first developed to extract global and local spectral-spatial features.
Compared with state-of-the-art HSI classification methods, experimental results demonstrate that DualMamba achieves significant classification accuracy.
- Score: 10.329381824237434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness and efficiency of modeling complex spectral-spatial relations are both crucial for Hyperspectral image (HSI) classification. Most existing methods based on CNNs and transformers still suffer from heavy computational burdens and have room for improvement in capturing the global-local spectral-spatial feature representation. To this end, we propose a novel lightweight parallel design called lightweight dual-stream Mamba-convolution network (DualMamba) for HSI classification. Specifically, a parallel lightweight Mamba and CNN block are first developed to extract global and local spectral-spatial features. First, the cross-attention spectral-spatial Mamba module is proposed to leverage the global modeling of Mamba at linear complexity. Within this module, dynamic positional embedding is designed to enhance the spatial location information of visual sequences. The lightweight spectral/spatial Mamba blocks comprise an efficient scanning strategy and a lightweight Mamba design to efficiently extract global spectral-spatial features. And the cross-attention spectral-spatial fusion is designed to learn cross-correlation and fuse spectral-spatial features. Second, the lightweight spectral-spatial residual convolution module is proposed with lightweight spectral and spatial branches to extract local spectral-spatial features through residual learning. Finally, the adaptive global-local fusion is proposed to dynamically combine global Mamba features and local convolution features for a global-local spectral-spatial representation. Compared with state-of-the-art HSI classification methods, experimental results demonstrate that DualMamba achieves significant classification accuracy on three public HSI datasets and a superior reduction in model parameters and floating point operations (FLOPs).
Related papers
- MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification [46.111607032455225]
We propose a novel HSI classification model based on a Mamba model, named MambaHSI.
Specifically, we design a spatial Mamba block (SpaMB) to model the long-range interaction of the whole image at the pixel-level.
We propose a spectral Mamba block (SpeMB) to split the spectral vector into multiple groups, mine the relations across different spectral groups, and extract spectral features.
arXiv Detail & Related papers (2025-01-09T03:27:47Z) - Unleashing Correlation and Continuity for Hyperspectral Reconstruction from RGB Images [64.80875911446937]
We propose a Correlation and Continuity Network (CCNet) for HSI reconstruction from RGB images.
For the correlation of local spectrum, we introduce the Group-wise Spectral Correlation Modeling (GrSCM) module.
For the continuity of global spectrum, we design the Neighborhood-wise Spectral Continuity Modeling (NeSCM) module.
arXiv Detail & Related papers (2025-01-02T15:14:40Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.
We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.
We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
We propose the Cross-Scanning Mamba, named CS-Mamba, that employs a Spatial-Spectral SSM for global-local balanced context encoding.
Experiment results show that our CS-Mamba achieves state-of-the-art performance and the masked training method can better reconstruct smooth features to improve the visual quality.
arXiv Detail & Related papers (2024-08-01T15:14:10Z) - GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification [19.740333867168108]
GraphMamba is an efficient graph structure learning vision Mamba classification framework to achieve deep spatial-spectral information mining.
The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness.
arXiv Detail & Related papers (2024-07-11T07:56:08Z) - Spectral-Spatial Mamba for Hyperspectral Image Classification [23.215920983979426]
spectral-spatial Mamba (SS-Mamba) is applied to hyperspectral image (HSI) classification.
The proposed SS-Mamba mainly consists of spectral-spatial token generation module and several stacked spectral-spatial Mamba blocks.
The experimental results conducted on widely used HSI datasets reveal that the proposed model achieves competitive results.
arXiv Detail & Related papers (2024-04-29T03:36:05Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models [18.391049303136715]
We propose a generative framework for HSI classification with diffusion models (SpectralDiff)
SpectralDiff effectively mines the distribution information of high-dimensional and highly redundant data.
Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-12T16:32:34Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.