Quantum repeaters based on stationary Gottesman-Kitaev-Preskill qubits
- URL: http://arxiv.org/abs/2406.07158v1
- Date: Tue, 11 Jun 2024 11:04:49 GMT
- Title: Quantum repeaters based on stationary Gottesman-Kitaev-Preskill qubits
- Authors: Stefan Häussler, Peter van Loock,
- Abstract summary: We consider the bosonic Gottesman-Kitaev-Preskill (GKP) code as a natural choice for a loss-correction-based quantum repeater.
We analyze and assess the performance of such a GKP-based quantum repeater where, apart from the initial state generations and distributions, all operations can be performed via deterministic linear mode transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum repeaters that incorporate quantum error correction codes have been shown to be a promising alternative compared with the original quantum repeaters that rely upon probabilistic quantum error detection depending on classical communication over remote repeater stations. A particularly efficient way of encoding qubits into an error correction code is through bosonic codes where even a single oscillator mode serves as a sufficiently large, physical system. Here we consider the bosonic Gottesman-Kitaev-Preskill (GKP) code as a natural choice for a loss-correction-based quantum repeater. However, unlike existing treatments, we focus on the excitation loss that occurs in the local, stationary memory qubits as represented by, for instance, collective atomic spin modes. We analyze and assess the performance of such a GKP-based quantum repeater where, apart from the initial state generations and distributions, all operations can be performed via deterministic linear mode transformations, as opposed to other existing memory-based quantum repeater schemes.
Related papers
- Performance of Rotation-Symmetric Bosonic Codes in a Quantum Repeater
Network [0.0]
Quantum error correction codes based on continuous variables play an important role for the implementation of quantum communication systems.
A natural application of such codes occurs within quantum repeater systems which are used to combat severe channel losses and local gate errors.
Here we consider a cavity-QED based repeater scheme to address the losses in the quantum channel.
arXiv Detail & Related papers (2023-08-30T07:39:11Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - All-photonic one-way quantum repeaters [15.3862808585761]
We propose a general framework for all-photonic one-way quantum repeaters based on the measurement-based error correction.
We present a novel decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the measurements made across the network.
arXiv Detail & Related papers (2022-10-18T18:07:19Z) - Quantum Zeno Repeaters [0.0]
Quantum repeaters pave the way for long-distance quantum communications and quantum Internet.
Our work has potential to contribute to long distance quantum communications and quantum computing via quantum Zeno effect.
arXiv Detail & Related papers (2022-06-17T13:56:44Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Overcoming the repeaterless bound in continuous-variable quantum
communication without quantum memories [0.0]
One of the main problems in quantum communications is how to achieve high rates at long distances.
We introduce a continuous-variable protocol which overcomes the repeaterless bound and scales like the single-repeater bound.
We show that our scheme can be extended to longer repeater chains using quantum memories.
arXiv Detail & Related papers (2021-05-08T04:02:17Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.