論文の概要: 3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
- arxiv url: http://arxiv.org/abs/2406.07327v1
- Date: Tue, 11 Jun 2024 14:59:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:34:38.942175
- Title: 3D-Properties: Identifying Challenges in DPO and Charting a Path Forward
- Title(参考訳): 3D-Properties:DPOにおける課題の特定と今後への道のり
- Authors: Yuzi Yan, Yibo Miao, Jialian Li, Yipin Zhang, Jian Xie, Zhijie Deng, Dong Yan,
- Abstract要約: 実験効果を総合的に検討し,RLHF-PPOとの比較を行った。
DPOの学習結果のtextbf3D-properties を同定する。
我々はtextbf3D-properties による問題を緩和するための簡単な正規化手法を提案する。
- 参考スコア(独自算出の注目度): 17.27880657597116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning large language models (LLMs) with human preference has recently gained tremendous attention, with the canonical yet costly RLHF-PPO and the simple and straightforward Direct Preference Optimization (DPO) as two examples. Despite the efficiency, DPO has rarely be used in the state-of-the-art production-level LLMs, implying its potential pathologies. In this work, we revisit DPO with a comprehensive examination of its empirical efficacy and a systematic comparison with RLHF-PPO. We identify the \textbf{3D}-properties of DPO's learning outcomes: the \textbf{D}rastic drop in the likelihood of rejected responses, the \textbf{D}egradation into LLM unlearning, and the \textbf{D}ispersion effect on unseen responses through experiments with both a carefully designed toy model and practical LLMs on tasks including mathematical problem-solving and instruction following. These findings inherently connect to some observations made by related works and we additionally contribute a plausible theoretical explanation for them. Accordingly, we propose easy regularization methods to mitigate the issues caused by \textbf{3D}-properties, improving the training stability and final performance of DPO. Our contributions also include an investigation into how the distribution of the paired preference data impacts the effectiveness of DPO. We hope this work could offer research directions to narrow the gap between reward-free preference learning methods and reward-based ones.
- Abstract(参考訳): 大規模言語モデル(LLM)を人間の好みで調整する作業は最近、標準的だがコストがかかるRLHF-PPOと、単純で簡単な直接参照最適化(DPO)を2つの例として、大きな注目を集めている。
効率性にもかかわらず、DPOは最先端のLLMではほとんど使われておらず、その潜在的な病理を示唆している。
本研究では,その経験的効果を総合的に検討し,RLHF-PPOとの比較を行った。
我々は,DPOの学習結果の「textbf{3D}-properties」と「textbf{D}rastic drop in the possibility of the rejected response」,「textbf{D}egradation into LLM unlearning」,「textbf{D}ispersion effect on unseen response」と「textbf{D}ispersion effect on an experiment with a carefully designed toy model and practical LLMs on task on mathematical problem-solving and instruction following」を同定した。
これらの知見は, 関連する研究から得られたいくつかの観察と密接に関連しており, また, その理論的説明にも寄与する。
そこで本稿では,‘textbf{3D}-properties’によって生じる問題を緩和し,DPOのトレーニング安定性と最終的な性能を向上させるため,簡単な正規化手法を提案する。
コントリビューションには、ペア化された嗜好データの分布がDPOの有効性にどのように影響するかの調査も含まれる。
この研究が、報酬のない選好学習方法と報奨ベースの方法とのギャップを狭めるための研究の方向性を提供することを期待している。
関連論文リスト
- Entropy Controllable Direct Preference Optimization [3.536605202672355]
提案するDPOは,提案するポリシのエントロピーを制御可能なH-DPOである。
実験の結果,H-DPO は様々なタスクにおいて DPO よりも優れており,数理タスクに対するpass@$k$ 評価において優れた結果が得られた。
論文 参考訳(メタデータ) (2024-11-12T07:09:44Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について,その報酬に基づいて各トークンに重要度を割り当てる手法を提案する。
TIS-DPOは、無害性、有用性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-10-06T04:03:00Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
我々は,ベルマン方程式を満たす一般逆Q-ラーニングアルゴリズムとして,トークンレベルMDPのDPOを導出できることを示す。
本稿では,マルチターン対話における情報活用,推論,エージェント応用,マルチモデルシステムのエンドツーエンドトレーニングなど,我々の研究の応用について論じる。
論文 参考訳(メタデータ) (2024-04-18T17:37:02Z) - Towards Analyzing and Understanding the Limitations of DPO: A Theoretical Perspective [25.34250859820326]
DPOの最適化過程を解析するためにフィールド理論を用いた分析フレームワークを提供する。
DPO損失関数は、好むデータを生成する確率を増大させるよりも速い速度で人間の非推奨データを生成する確率を減少させる。
論文 参考訳(メタデータ) (2024-04-06T13:24:37Z) - Mixed Preference Optimization: Reinforcement Learning with Data Selection and Better Reference Model [3.300814846990438]
大きな言語モデル(LLM)は、自然言語の処理と生成能力によって、ますます人気が高まっている。
大量のテキストのデータセットでトレーニングされているため、LLMは有害なバイアスを継承し、人間の値と一致しない出力を生成することができる。
本稿では,人間フィードバックを用いた強化学習(RLHF)と直接選好最適化(DPO)のような対照的な学習手法の2つのLLMアライメントについて検討する。
RLHFとDPOの安定性とロバスト性を解析することにより,両手法の弱点を緩和する新しい手法MPOを提案する。
論文 参考訳(メタデータ) (2024-03-28T14:15:10Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
大規模言語モデル (LLMs) は、人工知能の進歩のためのブループリントを定式化した。
人間のフィードバックによる強化学習(RLHF)がこの追求を支える重要な技術パラダイムとして出現する。
本稿では、RLHFの枠組みを解明し、PPOの内部構造を再評価し、PPOアルゴリズムを構成する部分が政策エージェントの訓練にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2023-07-11T01:55:24Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
大規模言語モデルと人間の嗜好を整合させる新しいアルゴリズムを提案する。
言語タスクにおいてPPOを常に上回り、大きなマージンを持つことを示す。
また,損失関数の設計を支援する理論的正当性も提供する。
論文 参考訳(メタデータ) (2023-06-04T01:59:40Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。