論文の概要: TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights
- arxiv url: http://arxiv.org/abs/2410.04350v1
- Date: Sun, 6 Oct 2024 04:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:20:17.224055
- Title: TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights
- Title(参考訳): TIS-DPO:推定重み付き直接選好最適化のためのトークンレベルの重要度サンプリング
- Authors: Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, Meng Cao,
- Abstract要約: 本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について,その報酬に基づいて各トークンに重要度を割り当てる手法を提案する。
TIS-DPOは、無害性、有用性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 73.9088920210495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.
- Abstract(参考訳): 直接選好最適化(DPO)は、その単純さと有効性から、Large Language Models(LLM)の選好アライメントに広く採用されている。
しかし、DPOは、全応答が単一アームとして扱われるバンディット問題として導出され、トークン間の重要性の違いを無視し、最適化効率に影響を及ぼし、最適な結果を得るのが難しくなる。
本研究では, DPO の最適データは, トークンの重要度に差がないため, 勝ち負けにおける各トークンに対して等しく期待される報酬を持つことを示す。
しかし、この最適データセットは実際には利用できないため、重要サンプリングのために元のデータセットを用いて、偏りのない最適化を実現することを提案する。
そこで本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について提案する。
従来の研究から着想を得て,一対の対照的なLLMからの予測確率の差を用いて,トークンの重要度を推定した。
提案手法は,(1) 元のLDMをコントラスト的プロンプトで導くこと,(2) 勝敗応答を用いて2つの別々のLDMを訓練すること,(3) 勝敗応答を用いて前後DPOトレーニングを行うこと,の3つである。
実験により、TIS-DPOは、無害性、無益性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っていることが示された。
また、推定重量を可視化し、キートークンの位置を識別する能力を示す。
関連論文リスト
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence [31.03305638930844]
DPO(Direct Preference Optimization)は、大規模言語モデルと人間の好みとの直接的かつ堅牢なアライメントのための顕著なアルゴリズムとして登場した。
有望な有効性にもかかわらず、DPOは顕著な欠点に直面している。
また,この問題はDPOのアルゴリズム長依存性にも起因していると考えられる。
論文 参考訳(メタデータ) (2024-06-16T14:24:30Z) - Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization [35.36615140853107]
Triple Preference Optimization (TPO) は、大きめの言語モデルと3つの好みを、別個のSupervised Fine-Tuned (SFT)モデルを必要とせずに整合させるように設計されている。
TPOは,SFT,DPO,KTO,IPO,CPO,ORPOといった他の手法によるモデルと比較して,優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-26T20:18:11Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
学習を通して嗜好が収集されるオンライン環境において,識別器誘導型DPOであるD2POを提案する。
金の選好を収集する際、これらは政策の訓練だけでなく、銀ラベルによる政策訓練のためのさらに総合的なデータに対する差別的な反応評価モデルを訓練するために利用します。
DPOで政策を訓練し、従来のPPOを上回り、政策モデルから分離した差別者を維持することの恩恵を受けるのが最も効果的である。
論文 参考訳(メタデータ) (2024-05-02T17:44:41Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
好みラベルからの学習は、微調整された大きな言語モデルにおいて重要な役割を果たす。
好みの微調整には、教師付き学習、オンライン強化学習(RL)、コントラスト学習など、いくつかの異なるアプローチがある。
論文 参考訳(メタデータ) (2024-04-22T17:20:18Z) - Token-level Direct Preference Optimization [8.249403373337024]
微調整された事前訓練された大規模言語モデルは、それらを人間の価値観や意図と整合させるのに不可欠である。
トークンレベルでポリシーを最適化することにより,LLMと人間の嗜好を一致させる新しいアプローチである,トークンレベルの直接選好最適化(TDPO)を導入する。
論文 参考訳(メタデータ) (2024-04-18T08:49:38Z) - Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for
LLM Alignment [37.52249093928251]
本稿では,新しい枠組み,相対的フィードバックによる強化学習,新しい軌道方向ポリシー勾配アルゴリズムを提案する。
理論的には、P3Oは等価報酬に不変であり、PPOの複雑さを避ける。
実証的な評価では、P3OはKL-RewardトレードオフにおいてPPOよりも優れており、ヒトの嗜好に合わせたり、以前の方法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-30T01:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。