Estimating the Hallucination Rate of Generative AI
- URL: http://arxiv.org/abs/2406.07457v1
- Date: Tue, 11 Jun 2024 17:01:52 GMT
- Title: Estimating the Hallucination Rate of Generative AI
- Authors: Andrew Jesson, Nicolas Beltran-Velez, Quentin Chu, Sweta Karlekar, Jannik Kossen, Yarin Gal, John P. Cunningham, David Blei,
- Abstract summary: A conditional generative model (CGM) is prompted with a dataset and asked to make a prediction based on that dataset.
We develop a new method that takes an ICL problem -- that is, a CGM, a dataset, and a prediction question -- and estimates the probability that a CGM will generate a hallucination.
- Score: 44.854771627716225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work is about estimating the hallucination rate for in-context learning (ICL) with Generative AI. In ICL, a conditional generative model (CGM) is prompted with a dataset and asked to make a prediction based on that dataset. The Bayesian interpretation of ICL assumes that the CGM is calculating a posterior predictive distribution over an unknown Bayesian model of a latent parameter and data. With this perspective, we define a \textit{hallucination} as a generated prediction that has low-probability under the true latent parameter. We develop a new method that takes an ICL problem -- that is, a CGM, a dataset, and a prediction question -- and estimates the probability that a CGM will generate a hallucination. Our method only requires generating queries and responses from the model and evaluating its response log probability. We empirically evaluate our method on synthetic regression and natural language ICL tasks using large language models.
Related papers
- Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors [61.92704516732144]
We show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior.<n>We propose two methods that leverage causal mechanisms to predict the correctness of model outputs.
arXiv Detail & Related papers (2025-05-17T00:31:39Z) - Can Generative AI Solve Your In-Context Learning Problem? A Martingale Perspective [3.759959474986743]
We show when ancestral sampling from the predictive distribution of a CGM is equivalent to sampling datasets from the posterior predictive of the assumed Bayesian model.
The generative predictive $p$-value can then be used in a statistical decision procedure to determine when the model is appropriate for an ICL problem.
arXiv Detail & Related papers (2024-12-08T19:03:21Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - What and How does In-Context Learning Learn? Bayesian Model Averaging,
Parameterization, and Generalization [111.55277952086155]
We study In-Context Learning (ICL) by addressing several open questions.
We show that, without updating the neural network parameters, ICL implicitly implements the Bayesian model averaging algorithm.
We prove that the error of pretrained model is bounded by a sum of an approximation error and a generalization error.
arXiv Detail & Related papers (2023-05-30T21:23:47Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
We show that Sparse Implicit Processes (SIP) is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model.
We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
arXiv Detail & Related papers (2022-07-21T18:00:01Z) - Provable concept learning for interpretable predictions using
variational inference [7.0349768355860895]
In safety critical applications, practitioners are reluctant to trust neural networks when no interpretable explanations are available.
We propose a probabilistic modeling framework to derive (C)oncept (L)earning and (P)rediction (CLAP)
We prove that our method is able to identify them while attaining optimal classification accuracy.
arXiv Detail & Related papers (2022-04-01T14:51:38Z) - Multi-modality fusion using canonical correlation analysis methods:
Application in breast cancer survival prediction from histology and genomics [16.537929113715432]
We study the use of canonical correlation analysis (CCA) and penalized variants of CCA for the fusion of two modalities.
We analytically show that, with known model parameters, posterior mean estimators that jointly use both modalities outperform arbitrary linear mixing of single modality posterior estimators in latent variable prediction.
arXiv Detail & Related papers (2021-11-27T21:18:01Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
We propose a new framework for interpreting (features and samples) black-box machine learning models via a metamodeling technique.
The metamodel can be estimated from data generated via a trained complex model by running the computer experiment on samples of data in the region of interest.
arXiv Detail & Related papers (2021-01-04T04:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.