論文の概要: Novel Optimized Designs of Modulo $2n+1$ Adder for Quantum Computing
- arxiv url: http://arxiv.org/abs/2406.07486v1
- Date: Tue, 11 Jun 2024 17:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 14:45:44.656099
- Title: Novel Optimized Designs of Modulo $2n+1$ Adder for Quantum Computing
- Title(参考訳): 量子コンピューティングのためのModulo $2n+1$adderの新しい最適化設計
- Authors: Bhaskar Gaur, Himanshu Thapliyal,
- Abstract要約: 量子変調 $ (2n+1)$ adder の既存の設計は存在しない。
モジュロ$(2n+1)$加算に特化した4つの量子加算器を提案する。
- 参考スコア(独自算出の注目度): 0.4604003661048266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum modular adders are one of the most fundamental yet versatile quantum computation operations. They help implement functions of higher complexity, such as subtraction and multiplication, which are used in applications such as quantum cryptanalysis, quantum image processing, and securing communication. To the best of our knowledge, there is no existing design of quantum modulo $(2n+1)$ adder. In this work, we propose four quantum adders targeted specifically for modulo $(2n+1)$ addition. These adders can provide both regular and modulo $(2n+1)$ sum concurrently, enhancing their application in residue number system based arithmetic. Our first design, QMA1, is a novel quantum modulo $(2n+1)$ adder. The second proposed adder, QMA2, optimizes the utilization of quantum gates within the QMA1, resulting in 37.5% reduced CNOT gate count, 46.15% reduced CNOT depth, and 26.5% decrease in both Toffoli gates and depth. We propose a third adder QMA3 that uses zero resets, a dynamic circuits based feature that reuses qubits, leading to 25% savings in qubit count. Our fourth design, QMA4, demonstrates the benefit of incorporating additional zero resets to achieve a purer zero state, reducing quantum state preparation errors. Notably, we conducted experiments using 5-qubit configurations of the proposed modulo $(2n+1)$ adders on the IBM Washington, a 127-qubit quantum computer based on the Eagle R1 architecture, to demonstrate a 28.8% reduction in QMA1's error of which: (i) 18.63% error reduction happens due to gate and depth reduction in QMA2, and (ii) 2.53% drop in error due to qubit reduction in QMA3, and (iii) 7.64% error decreased due to application of additional zero resets in QMA4.
- Abstract(参考訳): 量子モジュラー加算器は、最も基本的で汎用的な量子計算処理の1つである。
これらは、量子暗号解析、量子画像処理、セキュア通信などのアプリケーションで使用される減算や乗算のような、より複雑な関数を実装するのに役立つ。
我々の知る限りでは、量子変調の既存の設計は、$(2n+1)$ adder は存在しない。
本研究では、モジュロ$(2n+1)$加算に特化した4つの量子加算器を提案する。
これらの加算器は通常の$(2n+1)$sumと$(2n+1)$を同時に提供でき、剰余数系に基づく算術におけるそれらの応用を高めることができる。
我々の最初の設計 QMA1 は、新しい量子モジュラーロ $(2n+1)$ adder である。
第2の加算器であるQMA2はQMA1内での量子ゲートの利用を最適化し、37.5%のCNOTゲート数、46.15%のCNOT深さ、26.5%のToffoliゲートと深さが減少する。
量子ビットを再利用する動的回路ベースの機能であるゼロリセットを利用する第3の加算器QMA3を提案する。
第4の設計であるQMA4は、より純粋なゼロ状態を達成するために追加のゼロリセットを組み込むことの利点を示し、量子状態の準備エラーを減らす。
特に、Eagle R1アーキテクチャに基づく127量子ビット量子コンピュータであるIBM Washington上で提案したmodulo $(2n+1)$ addersの5-qubit構成を用いて、QMA1のエラーを28.8%削減する実験を行った。
(i)QMA2のゲート及び深さ減少による18.63%の誤差低減
(二)QMA3の量子ビット減少による誤差2.53%の減少
(iii)QMA4におけるゼロリセットの追加の適用により、7.64%のエラーが減少した。
関連論文リスト
- A Logarithmic Depth Quantum Carry-Lookahead Modulo $(2^n-1)$ Adder [0.8192907805418581]
量子アルゴリズムの実装には、モジュロ加算のための量子演算回路の開発が不可欠である。
現在のノイズ中間スケール量子(NISQ)時代における量子コンピュータは、フォールトトレラント設計に関連する計算コストを処理できない。
この研究は量子キャリーヘッドモジュロ$(2n - 1)$ adder (QCLMA)を示し、2つのnビット番号を受け取り、その加算をO(log n)深さで行うように設計されている。
論文 参考訳(メタデータ) (2024-08-02T04:31:22Z) - Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing [0.5188841610098435]
NISQ量子コンピューティングにおける量子加算器回路のノイズレジリエンスの近似計算による改善について検討する。
雑音耐性を保ちながら、深さを減らすために、近似量子加算器の5つの設計を提案する。
論文 参考訳(メタデータ) (2024-08-01T21:34:02Z) - Optimizing Gate Decomposition for High-Level Quantum Programming [0.0]
マルチコントロール量子ゲートは、高レベルの量子プログラミングにおいて自然に発生する。
本稿では,多制御量子ゲートを最適化する新しい手法を提案する。
我々はCNOTゲート数を大幅に削減した。
論文 参考訳(メタデータ) (2024-06-08T21:36:08Z) - SpinQuant: LLM quantization with learned rotations [49.07335692298487]
重み、アクティベーション、KVキャッシュに適用された後トレーニング量子化(PTQ)技術は、大規模言語モデル(LLM)のメモリ使用量、レイテンシ、消費電力を大幅に削減する。
我々は、量子化精度を高めつつ、完全精度のトランスフォーマーアーキテクチャにおいて同一の出力をもたらす、適用可能な回転パラメータ化の集合を同定する。
本研究では,学習した回転行列を最適な量子化ネットワーク精度に組み込む新しい手法であるSpinQuantを提案する。
論文 参考訳(メタデータ) (2024-05-26T02:15:49Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
非負の振幅を持つ非絡み合った量子証明のパワー、つまり $textQMA+(2)$ を表すクラスについて研究する。
特に,小集合拡張,ユニークなゲーム,PCP検証のためのグローバルプロトコルを設計する。
QMA(2) が $textQMA+(2)$ に等しいことを示す。
論文 参考訳(メタデータ) (2024-02-29T01:35:46Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Improving Quantum Simulation Efficiency of Final State Radiation with
Dynamic Quantum Circuits [1.3375143521862154]
我々は、QPSアルゴリズムのスケーリングを改善するために、動的量子コンピューティングと呼ばれる新しい量子ハードウェア機能を活用している。
量子パートンシャワー回路を改良し、古典情報に基づく中周期キュービット計測、リセット、量子演算を取り入れた。
論文 参考訳(メタデータ) (2022-03-18T15:31:19Z) - Quantum thermodynamic methods to purify a qubit on a quantum processing
unit [68.8204255655161]
我々は、同じ量子ビットを備えた量子処理ユニット上で量子ビットを浄化する量子熱力学法について報告する。
私たちの出発点は、よく知られた2つのキュービットスワップエンジンをエミュレートする3つのキュービット設計です。
使用可能な超伝導量子ビットベースのQPU上に実装し,200mKまでの浄化能を観測する。
論文 参考訳(メタデータ) (2022-01-31T16:13:57Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z) - HAWQV3: Dyadic Neural Network Quantization [73.11579145354801]
現在の低精度量子化アルゴリズムは、浮動小数点から量子化された整数値への変換の隠れコストを持つことが多い。
HAWQV3は、新しい混合精度整数のみの量子化フレームワークである。
論文 参考訳(メタデータ) (2020-11-20T23:51:43Z) - Efficient Construction of a Control Modular Adder on a Carry-Lookahead
Adder Using Relative-phase Toffoli Gates [0.9697877942346909]
2種類の量子コンピュータにおいて相対位相トフォリゲートを用いて,KQを小さくした効率的な制御モジュール加算器を構築する。
FTQでは、$T$ゲートは蒸留によって重くコストがかかるため、高い精度で$T$ゲートを走らせるためにアンシラを製造するが、特別に作られた多くのアンシラクビットを消費する。
そこで本研究では,元の$T$ゲートの20%しか使用しない新しい制御モジュール加算器を提案する。
論文 参考訳(メタデータ) (2020-10-01T08:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。