論文の概要: VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.07595v1
- Date: Tue, 11 Jun 2024 13:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:35:30.165667
- Title: VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models
- Title(参考訳): VulDetectBench: 大規模言語モデルによる脆弱性検出の深い機能評価
- Authors: Yu Liu, Mingxin Yang, Yu Xie, Ping Chen, Xiaojin Zhang, Wei Chen,
- Abstract要約: 本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
- 参考スコア(独自算出の注目度): 13.02415811244767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have training corpora containing large amounts of program code, greatly improving the model's code comprehension and generation capabilities. However, sound comprehensive research on detecting program vulnerabilities, a more specific task related to code, and evaluating the performance of LLMs in this more specialized scenario is still lacking. To address common challenges in vulnerability analysis, our study introduces a new benchmark, VulDetectBench, specifically designed to assess the vulnerability detection capabilities of LLMs. The benchmark comprehensively evaluates LLM's ability to identify, classify, and locate vulnerabilities through five tasks of increasing difficulty. We evaluate the performance of 17 models (both open- and closed-source) and find that while existing models can achieve over 80% accuracy on tasks related to vulnerability identification and classification, they still fall short on specific, more detailed vulnerability analysis tasks, with less than 30% accuracy, making it difficult to provide valuable auxiliary information for professional vulnerability mining. Our benchmark effectively evaluates the capabilities of various LLMs at different levels in the specific task of vulnerability detection, providing a foundation for future research and improvements in this critical area of code security. VulDetectBench is publicly available at https://github.com/Sweetaroo/VulDetectBench.
- Abstract(参考訳): 大規模言語モデル(LLM)は、大量のプログラムコードを含むトレーニングコーパスを持ち、モデルのコード理解と生成能力を大幅に改善する。
しかし、プログラムの脆弱性の検出、コードに関するより具体的なタスク、そしてこのより専門的なシナリオにおけるLLMの性能評価に関する包括的な研究は、いまだに不足している。
脆弱性分析における一般的な課題に対処するため,本研究では,LSMの脆弱性検出機能を評価するために特別に設計された,新たなベンチマークであるVulDetectBenchを紹介した。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
我々は17モデル(オープンソースとクローズドソースの両方)の性能を評価し、既存のモデルでは脆弱性の識別と分類に関連するタスクにおいて80%以上の精度を達成できるが、その一方で、特定のより詳細な脆弱性分析タスクでは、30%未満の精度で不足しており、プロの脆弱性マイニングに有用な補助情報を提供することは困難である。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
VulDetectBenchはhttps://github.com/Sweetaroo/VulDetectBench.comで公開されている。
関連論文リスト
- Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG [14.11780946647832]
Vul-RAGは知識レベルの検索強化生成(RAG)に基づく新たな脆弱性検出手法である
Vul-RAGは、既存のCVEインスタンスからLLMを介して多次元知識を抽出することで脆弱性知識ベースを構築する。
Vul-RAGは、機能的意味論に基づく構築された知識ベースから、関連する脆弱性知識を検索する。
PairVul を用いた Vul-RAG の評価は,Vul-RAG が精度/ペアワイズ精度の相対的向上率を 12.96%/110% 向上したことを示す。
論文 参考訳(メタデータ) (2024-06-17T02:25:45Z) - Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models [17.96542494363619]
大規模言語モデル(LLM)は、複雑なコンテキストとコンテンツ生成の理解において顕著な能力を示している。
脆弱性検出と説明にLLMを利用するフレームワークであるLLMVulExpを提案する。
LLMVulExpは、LLMが脆弱性検出(例えば、SeVCデータセットの90%以上のF1スコア)と説明を効果的に行うことができる。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - A Comprehensive Study of the Capabilities of Large Language Models for Vulnerability Detection [9.422811525274675]
大規模言語モデル(LLM)は、コード生成やその他のソフトウェアエンジニアリングタスクに大きな可能性を実証しています。
脆弱性検出は、ソフトウェアシステムのセキュリティ、完全性、信頼性を維持する上で非常に重要である。
最近の研究は、ジェネリックプロンプト技術を用いた脆弱性検出にLLMを適用しているが、このタスクの能力とそれらが犯すエラーの種類は未だ不明である。
論文 参考訳(メタデータ) (2024-03-25T21:47:36Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
LLM(Large Language Models)は、コード関連のタスクにおいて顕著なパフォーマンスを示す。
トレーニング済みのLLMがセキュリティ上の脆弱性を検出し、既存のツールの限界に対処できるかどうかを評価する。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。