論文の概要: Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
- arxiv url: http://arxiv.org/abs/2406.07598v2
- Date: Thu, 13 Jun 2024 19:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:03:47.136585
- Title: Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
- Title(参考訳): 最小フレーム平均化による高対称性と効率の等価性
- Authors: Yuchao Lin, Jacob Helwig, Shurui Gui, Shuiwang Ji,
- Abstract要約: 最小フレーム平均化(Minimum Frame Averaging、MFA)は、証明可能な最小限のフレームを構築するための数学的フレームワークである。
その結果, 多様なタスクにまたがって, MFAによる対称性の符号化の有効性と効果が示された。
- 参考スコア(独自算出の注目度): 48.81897136561015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider achieving equivariance in machine learning systems via frame averaging. Current frame averaging methods involve a costly sum over large frames or rely on sampling-based approaches that only yield approximate equivariance. Here, we propose Minimal Frame Averaging (MFA), a mathematical framework for constructing provably minimal frames that are exactly equivariant. The general foundations of MFA also allow us to extend frame averaging to more groups than previously considered, including the Lorentz group for describing symmetries in space-time, and the unitary group for complex-valued domains. Results demonstrate the efficiency and effectiveness of encoding symmetries via MFA across a diverse range of tasks, including $n$-body simulation, top tagging in collider physics, and relaxed energy prediction. Our code is available at https://github.com/divelab/MFA.
- Abstract(参考訳): フレーム平均化による機械学習システムにおける等価性の実現を検討する。
現在のフレーム平均化法は、大きなフレーム上でのコストのかかる和や、近似同値しか得られないサンプリングベースのアプローチに依存している。
本稿では,最小フレーム平均化(MFA, Minimal Frame Averaging)を提案する。
MFAの一般基盤はまた、時空の対称性を記述するローレンツ群や複素値領域のユニタリ群など、これまで考えられていたよりも多くの群にフレーム平均化を拡張できる。
その結果,MFAによる対称性の符号化は,$n$-bodyシミュレーション,コライダー物理におけるトップタグ付け,緩和エネルギー予測など,多種多様なタスクにまたがって効率と効果が示された。
私たちのコードはhttps://github.com/divelab/MFA.comで公開されています。
関連論文リスト
- Learning Symmetrization for Equivariance with Orbit Distance
Minimization [27.284125807569115]
本稿では、任意のニューラルネットワークアーキテクチャをシミュレートし、与えられた群に対して同変させるための枠組みを提案する。
我々は,SO(2)画像分類タスクにおいて,提案手法の競合性を実験的に示す。
論文 参考訳(メタデータ) (2023-11-13T08:14:29Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
群対称性を持つ学習関数における同変アーキテクチャの限界を克服する新しい枠組みを提案する。
我々は、不変量や変圧器のような任意の基底モデルを使用し、それを与えられた群に同変するように対称性付けする。
実証実験は、調整された同変アーキテクチャに対する競争結果を示す。
論文 参考訳(メタデータ) (2023-06-05T13:40:54Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Mining Relations among Cross-Frame Affinities for Video Semantic
Segmentation [87.4854250338374]
関連性間の関係を, 単一スケールの内在的相関と多スケールの関係という2つの側面で検討する。
実験により,提案手法は最先端のVSS法に対して好適に動作することを示した。
論文 参考訳(メタデータ) (2022-07-21T12:12:36Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
本稿では,移動平均(SEMA)問題に基づく広く利用されている推定器のパワーを実証する。
これらすべてのアートな結果に対して、これらのアートな問題に対する結果も提示します。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions [71.60219086238254]
我々は、畳み込みと偏微分作用素(PDO)の接続から問題に対処する。
実装において、ほぼ同変の畳み込み(PDO-eConvs)を導出し、PDOの数値スキームを用いてシステムを識別する。
回転したMNISTと自然画像分類の実験により、PDO-eConvsは競合的に機能するが、より効率的にパラメータを使用することが示された。
論文 参考訳(メタデータ) (2020-07-20T18:57:26Z) - Sparse Gaussian Processes with Spherical Harmonic Features [14.72311048788194]
領域間変分ガウス過程(GP)の新たなクラスを導入する。
我々の推論スキームは変分フーリエの特徴に匹敵するが、次元の呪いに苦しむことはない。
実験の結果,本モデルでは,600万項目のデータセットに対して,2桁の精度で回帰モデルを適合させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-30T10:19:32Z) - Reciprocal Adversarial Learning via Characteristic Functions [12.961770002117142]
GAN(Generative Adversarial Nets)は、複雑な分散を伴うタスクに好まれるツールである。
特徴関数(CF)を用いて分布を時間ではなく時間的に比較する方法を示す。
次に、逆数が存在する場合の埋め込み領域とデータ領域の等価性を証明し、自動エンコーダ構造で自然にGANを開発する。
この効率的な構造は、単純なトレーニング戦略とともに2つのモジュールのみを使用して、双方向で鮮明な画像を生成する。
論文 参考訳(メタデータ) (2020-06-15T14:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。