Efficient Parallel Multi-Hop Reasoning: A Scalable Approach for Knowledge Graph Analysis
- URL: http://arxiv.org/abs/2406.07727v1
- Date: Tue, 11 Jun 2024 21:12:34 GMT
- Title: Efficient Parallel Multi-Hop Reasoning: A Scalable Approach for Knowledge Graph Analysis
- Authors: Jesmin Jahan Tithi, Fabio Checconi, Fabrizio Petrini,
- Abstract summary: Multi-hop reasoning (MHR) is a critical function in various applications.
This paper focuses on optimizing MHR for time efficiency on large-scale graphs.
We introduce a novel parallel algorithm that harnesses domain-specific learned embeddings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop reasoning (MHR) is a process in artificial intelligence and natural language processing where a system needs to make multiple inferential steps to arrive at a conclusion or answer. In the context of knowledge graphs or databases, it involves traversing multiple linked entities and relationships to understand complex queries or perform tasks requiring a deeper understanding. Multi-hop reasoning is a critical function in various applications, including question answering, knowledge base completion, and link prediction. It has garnered significant interest in artificial intelligence, machine learning, and graph analytics. This paper focuses on optimizing MHR for time efficiency on large-scale graphs, diverging from the traditional emphasis on accuracy which is an orthogonal goal. We introduce a novel parallel algorithm that harnesses domain-specific learned embeddings to efficiently identify the top K paths between vertices in a knowledge graph to find the best answers to a three-hop query. Our contributions are: (1) We present a new parallel algorithm to enhance MHR performance, scalability and efficiency. (2) We demonstrate the algorithm's superior performance on leading-edge Intel and AMD architectures through empirical results. We showcase the algorithm's practicality through a case study on identifying academic affiliations of potential Turing Award laureates in Deep Learning, highlighting its capability to handle intricate entity relationships. This demonstrates the potential of our approach to enabling high-performance MHR, useful to navigate the growing complexity of modern knowledge graphs.
Related papers
- Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Graph Reinforcement Learning for Combinatorial Optimization: A Survey and Unifying Perspective [6.199818486385127]
We use the trial-and-error paradigm of Reinforcement Learning for discovering better decision-making strategies.
This work focuses on non-canonical graph problems for which performant algorithms are typically not known.
arXiv Detail & Related papers (2024-04-09T17:45:25Z) - ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt [67.8934749027315]
We propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs.
We also propose a novel pre-training paradigm based on a group of $k$-nearest neighbors.
arXiv Detail & Related papers (2023-10-23T12:11:13Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Deep Algorithmic Question Answering: Towards a Compositionally Hybrid AI
for Algorithmic Reasoning [0.0]
We argue that the challenge of algorithmic reasoning in question answering can be effectively tackled with a "systems" approach to AI.
We propose an approach to algorithm reasoning for QA, Deep Algorithmic Question Answering.
arXiv Detail & Related papers (2021-09-16T14:28:18Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
We propose a new framework to exploit more valid facts while obtaining explainability for multi-hop QA.
Our framework contains three new ideas: (a) tt AMR-SG, an AMR-based Semantic Graph, constructed by candidate fact AMRs to uncover any hop relations among question, answer and multiple facts, (b) a novel path-based fact analytics approach exploiting tt AMR-SG to extract active facts from a large fact pool to answer questions, and (c) a fact-level relation modeling leveraging graph convolution network (GCN) to guide the reasoning process.
arXiv Detail & Related papers (2021-05-25T09:14:55Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
We propose a novel knowledge-aware approach that equips pre-trained language models with a multi-hop relational reasoning module.
It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs.
It unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability.
arXiv Detail & Related papers (2020-05-01T23:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.