論文の概要: Judging the Judges: A Systematic Investigation of Position Bias in Pairwise Comparative Assessments by LLMs
- arxiv url: http://arxiv.org/abs/2406.07791v1
- Date: Wed, 12 Jun 2024 01:12:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 20:46:21.681338
- Title: Judging the Judges: A Systematic Investigation of Position Bias in Pairwise Comparative Assessments by LLMs
- Title(参考訳): 審査員の判断:LLMによるペアワイズ比較評価における位置バイアスの体系的調査
- Authors: Lin Shi, Weicheng Ma, Soroush Vosoughi,
- Abstract要約: 本研究では,反復的整合性,位置整合性,位置整合性などの指標を用いて位置バイアスを定量化する枠組みを開発した。
我々はMTBenchベンチマークとDevBenchベンチマークから22タスクにわたる9つの判断モデルと40近い回答生成モデルを用いて実験を行い、約80,000の評価インスタンスを生成する。
本研究は,位置バイアスを理解するための新しい概念を導入し,評価のための多次元フレームワークを提供することによって,この分野に大きく貢献する。
- 参考スコア(独自算出の注目度): 29.65244816938028
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLM-as-a-Judge offers a promising alternative to human judges across various tasks, yet inherent biases, particularly position bias - a systematic preference for answers based on their position in the prompt - compromise its effectiveness. Our study investigates this issue by developing a framework to systematically study and quantify position bias using metrics such as repetitional consistency, positional consistency, and positional fairness. We conduct experiments with 9 judge models across 22 tasks from the MTBench and DevBench benchmarks and nearly 40 answer-generating models, generating approximately 80,000 evaluation instances. This comprehensive assessment reveals significant variations in bias across judges and tasks. Although GPT-4 often excels in positional consistency and fairness, some more cost-effective models perform comparably or even better in specific tasks, highlighting essential trade-offs between consistency, fairness, and cost. Our results also demonstrate high consistency of judgment across repetitions, confirming that position bias is not due to random variations. This research significantly contributes to the field by introducing new concepts for understanding position bias and providing a multi-dimensional framework for evaluation. These insights guide the selection of optimal judge models, enhance benchmark design, and lay the foundation for future research into effective debiasing strategies, ultimately enhancing the reliability of LLM evaluators.
- Abstract(参考訳): LLM-as-a-Judgeは、様々なタスク、しかし固有のバイアス、特に位置バイアス(特に、プロンプトにおける彼らの位置に基づく回答の体系的な選好)に対する有望な代替手段を提供し、その効果を損なう。
本研究は,反復的整合性,位置整合性,位置整合性などの指標を用いて,位置バイアスを体系的に研究・定量化する枠組みを開発することにより,この問題を考察する。
我々はMTBenchベンチマークとDevBenchベンチマークから22タスクにわたる9つの判断モデルと40近い回答生成モデルを用いて実験を行い、約80,000の評価インスタンスを生成する。
この総合的な評価は、裁判官やタスク間でのバイアスの顕著な変化を明らかにします。
GPT-4は、しばしば位置整合性と公平性に優れるが、よりコスト効率の良いモデルでは、特定のタスクにおいて、整合性、公平性、コストの基本的なトレードオフを強調しながら、比較可能あるいはそれ以上に優れた性能を発揮する。
また, 位置偏差がランダムな変動によるものではないことを確認し, 繰り返しによる判定の整合性を示した。
本研究は,位置バイアスを理解するための新しい概念を導入し,評価のための多次元フレームワークを提供することによって,この分野に大きく貢献する。
これらの洞察は、最適な審査モデルの選択を導き、ベンチマーク設計を強化し、将来の効果的なデバイアスング戦略の研究の基礎を築き、最終的にLLM評価器の信頼性を高めます。
関連論文リスト
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
judgeBenchは、知識、推論、数学、コーディングにまたがる挑戦的な応答ペアに関するLSMベースの判断を評価するためのベンチマークである。
審査員、微調整された審査員、マルチエージェントの審査員、報酬モデルに関する包括的な評価は、審査員ベンチが以前のベンチマークよりもかなり大きな課題を課していることを示している。
論文 参考訳(メタデータ) (2024-10-16T17:58:19Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Mitigating the Bias of Large Language Model Evaluation [30.67730115141905]
LLM-as-a-Judgeのバイアスに関する系統的研究を提案する。
クローズドソース・ジャッジモデルでは、表面品質の重要性を緩和するためにキャリブレーションを適用する。
オープンソース・ジャッジ・モデルでは, 対照的な学習によってバイアスを軽減し, 学習から逸脱するが, 表面品質が向上する負のサンプルをキュレートする。
論文 参考訳(メタデータ) (2024-09-25T09:52:44Z) - Direct Judgement Preference Optimization [66.83088028268318]
我々は、他のモデルのアウトプットを評価し、批判するために、生成的判断として大きな言語モデル(LLM)を訓練する。
我々は,異なるユースケースに対する選好ペアの収集に3つのアプローチを採用し,それぞれが異なる視点から生成判断を改善することを目的としている。
提案モデルは,位置や長さの偏りなどの固有バイアスに強く対応し,実践者が指定した評価プロトコルに柔軟に適用し,下流ジェネレータモデルを改善する上で有用な言語フィードバックを提供する。
論文 参考訳(メタデータ) (2024-09-23T02:08:20Z) - From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks [11.01213914485374]
数学的推論タスクにおいて,大規模言語モデル (LLM) について検討する。
本分析により,判定性能と候補モデルタスク性能との間に強い相関関係が明らかになった。
本研究では,各モデルのタスク性能などの統計データを用いて,判定性能の予測を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2024-09-06T10:09:41Z) - Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates [10.091146498861333]
GPT-4のような商用の大規模言語モデル(LLM)は、近年、異なるアライメントアプローチの評価と比較に使われている。
LLM審査員の信頼性とアライメントを評価・比較・可視化する枠組みを開発した。
論文 参考訳(メタデータ) (2024-08-23T11:49:01Z) - Eliminating Position Bias of Language Models: A Mechanistic Approach [119.34143323054143]
位置バイアスは現代言語モデル (LM) の一般的な問題であることが証明されている。
我々の力学解析は、ほぼ全ての最先端のLMで使われている2つのコンポーネント(因果的注意と相対的位置エンコーディング)に位置バイアスが関係している。
位置バイアスを排除することによって、LM-as-a-judge、検索強化QA、分子生成、数学推論など、下流タスクのパフォーマンスと信頼性が向上する。
論文 参考訳(メタデータ) (2024-07-01T09:06:57Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価する上で有望な能力を示している。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PairS)は、LLMを用いてペア比較を行い、候補テキストを効率よくランク付けする不確実性誘導探索手法である。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。