Multi-Agent Reinforcement Learning for Greenhouse Gas Offset Credit Markets
- URL: http://arxiv.org/abs/2504.11258v1
- Date: Tue, 15 Apr 2025 14:56:42 GMT
- Title: Multi-Agent Reinforcement Learning for Greenhouse Gas Offset Credit Markets
- Authors: Liam Welsh, Udit Grover, Sebastian Jaimungal,
- Abstract summary: Governments can provide firms with emission limits and penalize any excess emissions above the limit.<n>Excess emissions may also be offset by firms who choose to invest in carbon reducing and capturing projects.<n>We characterize the finite-agent Nash equilibrium for offset credit markets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change is a major threat to the future of humanity, and its impacts are being intensified by excess man-made greenhouse gas emissions. One method governments can employ to control these emissions is to provide firms with emission limits and penalize any excess emissions above the limit. Excess emissions may also be offset by firms who choose to invest in carbon reducing and capturing projects. These projects generate offset credits which can be submitted to a regulating agency to offset a firm's excess emissions, or they can be traded with other firms. In this work, we characterize the finite-agent Nash equilibrium for offset credit markets. As computing Nash equilibria is an NP-hard problem, we utilize the modern reinforcement learning technique Nash-DQN to efficiently estimate the market's Nash equilibria. We demonstrate not only the validity of employing reinforcement learning methods applied to climate themed financial markets, but also the significant financial savings emitting firms may achieve when abiding by the Nash equilibria through numerical experiments.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Global, robust and comparable digital carbon assets [0.28106259549258145]
We propose a new digital carbon asset (the PACT stablecoin) against which carbon offsetting claims can be transparently verified.
We implement and evaluate the PACT carbon stablecoin on the Tezos blockchain, which is designed to facilitate low-cost transactions.
Our work brings scale and trust to the voluntary carbon market by providing a transparent, scalable, and efficient framework for high integrity carbon credit transactions.
arXiv Detail & Related papers (2024-03-21T17:35:07Z) - Intelligent Agricultural Management Considering N$_2$O Emission and
Climate Variability with Uncertainties [5.04035338843957]
This study examines how artificial intelligence (AI) can be used in farming to boost crop yields, fine-tune use and watering, and reduce nitrate runoff and greenhouse gases.
Facing climate change and limited agricultural knowledge, we use Partially Observable Markov Decision Processes (POMDPs) with a crop simulator to model AI agents' interactions with farming environments.
Also, we develop Machine Learning (ML) models to predict N$$O emissions, integrating these predictions into the simulator.
arXiv Detail & Related papers (2024-02-13T22:29:40Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
arXiv Detail & Related papers (2022-05-02T06:02:13Z) - Deep Learning for Principal-Agent Mean Field Games [5.2220228867103815]
We develop a deep learning algorithm for solving Principal-Agent mean field games with market-clearing conditions.
We use an actor-critic approach to optimization, where the agents form a Nash equilibria according to the principal's penalty function.
Our numerical results illustrate the efficacy of the algorithm and lead to interesting insights into the nature of optimal PA interactions.
arXiv Detail & Related papers (2021-10-03T23:38:40Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.