論文の概要: Counterfactual-based Root Cause Analysis for Dynamical Systems
- arxiv url: http://arxiv.org/abs/2406.08106v1
- Date: Wed, 12 Jun 2024 11:38:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 17:15:13.612053
- Title: Counterfactual-based Root Cause Analysis for Dynamical Systems
- Title(参考訳): 動的システムの非実効的根本原因解析
- Authors: Juliane Weilbach, Sebastian Gerwinn, Karim Barsim, Martin Fränzle,
- Abstract要約: 本稿では,残留ニューラルネットワークを用いた根本原因同定手法を提案する。
構造方程式と外的影響に介入した場合に、より多くの根本原因が同定されることを示す。
本稿では,提案手法が実世界の河川データセットだけでなく,ベンチマーク・ダイナミック・システムにも有効であることを示す。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the underlying reason for a failing dynamic process or otherwise anomalous observation is a fundamental challenge, yet has numerous industrial applications. Identifying the failure-causing sub-system using causal inference, one can ask the question: "Would the observed failure also occur, if we had replaced the behaviour of a sub-system at a certain point in time with its normal behaviour?" To this end, a formal description of behaviour of the full system is needed in which such counterfactual questions can be answered. However, existing causal methods for root cause identification are typically limited to static settings and focusing on additive external influences causing failures rather than structural influences. In this paper, we address these problems by modelling the dynamic causal system using a Residual Neural Network and deriving corresponding counterfactual distributions over trajectories. We show quantitatively that more root causes are identified when an intervention is performed on the structural equation and the external influence, compared to an intervention on the external influence only. By employing an efficient approximation to a corresponding Shapley value, we also obtain a ranking between the different subsystems at different points in time being responsible for an observed failure, which is applicable in settings with large number of variables. We illustrate the effectiveness of the proposed method on a benchmark dynamic system as well as on a real world river dataset.
- Abstract(参考訳): 失敗する動的なプロセスや異常な観察の根底にある理由を特定することは、基本的な課題であるが、多くの産業応用がある。
因果推論を使って障害を発生させるサブシステムを特定することで、"観察された障害も発生し得るか?
この目的のためには、そのような反現実的な疑問に答えられるような、完全なシステムの振る舞いの形式的な記述が必要である。
しかし、根本原因同定のための既存の因果的方法は通常、静的な設定に限られており、構造的な影響ではなく、障害を引き起こす追加的な外部の影響に焦点が当てられている。
本稿では,Residual Neural Network を用いて動的因果系をモデル化し,それに対応する軌道上の反実分布を導出することにより,これらの問題を解決する。
構造方程式と外的影響に介入した場合, 外的影響にのみ介入した場合に, 根本原因が同定されることを定量的に示す。
対応するShapley値に効率的な近似を適用することで、多数の変数を持つ設定に適用可能な観測失敗の原因となる、異なる点における異なるサブシステム間のランキングも得られる。
本稿では,提案手法が実世界の河川データセットだけでなく,ベンチマーク・ダイナミック・システムにも有効であることを示す。
関連論文リスト
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
本稿では,システム間の因果関係を同定する統一手法を提案する。
システムの自由度を分析することで、私たちのアプローチは因果的影響と隠れた共同設立者の両方についてより包括的な理解を提供する。
この統合されたフレームワークは、理論モデルとシミュレーションを通じて検証され、その堅牢性とより広範な応用の可能性を示す。
論文 参考訳(メタデータ) (2024-10-25T10:57:35Z) - A Practical Approach to Causal Inference over Time [17.660953125689105]
我々は因果介入とその時間的影響を離散時間プロセス(DSP)に定義する。
因果介入前後のDSPの平衡状態が構造因果モデル(SCM)によって把握できる条件を示す。
得られた因果VARフレームワークにより、観測時系列データから経時的に因果推論を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T13:45:20Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASONはTopological Causal DiscoveryとPersonal Causal Discoveryで構成されている。
Topological Causal Discoveryコンポーネントは、根本原因を辿るために断層伝播をモデル化することを目的としている。
個々の因果発見コンポーネントは、単一のシステムエンティティの突然の変化パターンのキャプチャに重点を置いている。
論文 参考訳(メタデータ) (2023-02-03T20:17:45Z) - Variation-based Cause Effect Identification [5.744133015573047]
本稿では、因果発見のための変分に基づく原因影響同定(VCEI)フレームワークを提案する。
我々の枠組みは、既存の非循環因果関係を前提として、原因とメカニズムの独立(ICM)の原理に依存している。
因果方向では、このような変動が効果発生機構に影響を与えないことが期待されている。
論文 参考訳(メタデータ) (2022-11-22T05:19:12Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。