It is Never Too Late to Mend: Separate Learning for Multimedia Recommendation
- URL: http://arxiv.org/abs/2406.08270v2
- Date: Tue, 17 Dec 2024 12:56:42 GMT
- Title: It is Never Too Late to Mend: Separate Learning for Multimedia Recommendation
- Authors: Zhuangzhuang He, Zihan Wang, Yonghui Yang, Haoyue Bai, Le Wu,
- Abstract summary: We propose Separate Learning (SEA) for multimedia recommendation, which mainly includes mutual information view of modal-unique and -generic learning.<n>Specifically, we first use GNN to learn the representations of users and items in different modalities and split each modal representation into generic and unique parts. Then, we design Solosimloss to maximize the lower bound of mutual information, to align the general parts of different modalities, thus learning more high-quality modal-generic features.
- Score: 19.826293335983145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimedia recommendation, which incorporates various modalities (e.g., images, texts, etc.) into user or item representation to improve recommendation quality, and self-supervised learning carries multimedia recommendation to a plateau of performance, because of its superior performance in aligning different modalities. However, more and more research finds that aligning all modal representations is suboptimal because it damages the unique attributes of each modal. These studies use subtraction and orthogonal constraints in geometric space to learn unique parts. However, our rigorous analysis reveals the flaws in this approach, such as that subtraction does not necessarily yield the desired modal-unique and that orthogonal constraints are ineffective in user and item high-dimensional representation spaces. To make up for the previous weaknesses, we propose Separate Learning (SEA) for multimedia recommendation, which mainly includes mutual information view of modal-unique and -generic learning. Specifically, we first use GNN to learn the representations of users and items in different modalities and split each modal representation into generic and unique parts. We employ contrastive log-ratio upper bound to minimize the mutual information between the general and unique parts within the same modality, to distance their representations, thus learning modal-unique features. Then, we design Solosimloss to maximize the lower bound of mutual information, to align the general parts of different modalities, thus learning more high-quality modal-generic features. Finally, extensive experiments on three datasets demonstrate the effectiveness and generalization of our proposed framework. The code is available at SEA and the full training record of the main experiment.
Related papers
- Principled Multimodal Representation Learning [70.60542106731813]
Multimodal representation learning seeks to create a unified representation space by integrating diverse data modalities.<n>Recent advances have investigated the simultaneous alignment of multiple modalities, yet several challenges remain.<n>We propose Principled Multimodal Representation Learning (PMRL), a novel framework that achieves simultaneous alignment of multiple modalities.
arXiv Detail & Related papers (2025-07-23T09:12:25Z) - Learning Item Representations Directly from Multimodal Features for Effective Recommendation [51.49251689107541]
multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations.<n>We propose a novel model (i.e., LIRDRec) that learns item representations directly from multimodal features to augment recommendation performance.
arXiv Detail & Related papers (2025-05-08T05:42:22Z) - Multimodal Difference Learning for Sequential Recommendation [5.243083216855681]
We argue that user interests and item relationships vary across different modalities.
We propose a novel Multimodal Learning framework for Sequential Recommendation, MDSRec.
Results on five real-world datasets demonstrate the superiority of MDSRec over state-of-the-art baselines.
arXiv Detail & Related papers (2024-12-11T05:08:19Z) - MCSFF: Multi-modal Consistency and Specificity Fusion Framework for Entity Alignment [7.109735168520378]
Multi-modal entity alignment (MMEA) is essential for enhancing knowledge graphs and improving question-answering systems.
Existing methods often focus on integrating modalities through their complementarity but overlook the specificity of each modality.
We propose the Multi-modal Consistency and Specificity Fusion Framework (MCSFF), which innovatively integrates both complementary and specific aspects of modalities.
arXiv Detail & Related papers (2024-10-18T16:35:25Z) - Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations [16.036997801745905]
Multimodal learning plays a crucial role in enabling machine learning models to fuse and utilize diverse data sources.
Recent binding methods, such as ImageBind, typically use a fixed anchor modality to align multimodal data in the anchor modal embedding space.
We propose CentroBind, a simple yet powerful approach that eliminates the need for a fixed anchor.
arXiv Detail & Related papers (2024-10-02T23:19:23Z) - Mutual Information-based Representations Disentanglement for Unaligned Multimodal Language Sequences [25.73415065546444]
Key challenge in unaligned multimodal language sequences is to integrate information from various modalities to obtain a refined multimodal joint representation.
We propose a Mutual Information-based Representations Disentanglement (MIRD) method for unaligned multimodal language sequences.
arXiv Detail & Related papers (2024-09-19T02:12:26Z) - What to align in multimodal contrastive learning? [7.7439394183358745]
We introduce Contrastive MultiModal learning strategy that enables the communication between modalities in a single multimodal space.
Our theoretical analysis shows that shared, synergistic and unique terms of information naturally emerge from this formulation, allowing us to estimate multimodal interactions beyond redundancy.
In the latter, CoMM learns complex multimodal interactions and achieves state-of-the-art results on the six multimodal benchmarks.
arXiv Detail & Related papers (2024-09-11T16:42:22Z) - Modality-Balanced Learning for Multimedia Recommendation [21.772064939915214]
We propose a Counterfactual Knowledge Distillation method to solve the imbalance problem and make the best use of all modalities.
We also design a novel generic-and-specific distillation loss to guide the multimodal student to learn wider-and-deeper knowledge from teachers.
Our method could serve as a plug-and-play module for both late-fusion and early-fusion backbones.
arXiv Detail & Related papers (2024-07-26T07:53:01Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Multimodal Understanding Through Correlation Maximization and
Minimization [23.8764755753415]
We study the intrinsic nature of multimodal data by asking the following questions.
Can we learn more structured latent representations of general multimodal data?
Can we intuitively understand, both mathematically and visually, what the latent representations capture?
arXiv Detail & Related papers (2023-05-04T19:53:05Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDA is an easy-to-use method that automatically learns to jointly augment multimodal data in feature space.
We show that LeMDA can profoundly improve the performance of multimodal deep learning architectures.
arXiv Detail & Related papers (2022-12-29T20:39:36Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - What Makes Multimodal Learning Better than Single (Provably) [28.793128982222438]
We show that learning with multiple modalities achieves a smaller population risk thanonly using its subset of modalities.
This is the first theoretical treatment to capture important qualitative phenomenaobserved in real multimodal applications.
arXiv Detail & Related papers (2021-06-08T17:20:02Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.