論文の概要: Nyström Kernel Stein Discrepancy
- arxiv url: http://arxiv.org/abs/2406.08401v1
- Date: Wed, 12 Jun 2024 16:50:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 15:57:07.863431
- Title: Nyström Kernel Stein Discrepancy
- Title(参考訳): Nyström Kernel Steindisrepancy
- Authors: Florian Kalinke, Zoltan Szabo, Bharath K. Sriperumbudur,
- Abstract要約: 我々は Nystr を用いた KSD アクセラレーションを提案し、ランタイム $mathcal O!left(mn+m3right)$ for $n$ sample and $mll n$ Nystr"om points を提案する。
従来のガウスの仮定でnullの下で$sqrtn$-consistencyを示し、一連のベンチマークで適合性テストの適用性を示す。
- 参考スコア(独自算出の注目度): 4.551160285910023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel methods underpin many of the most successful approaches in data science and statistics, and they allow representing probability measures as elements of a reproducing kernel Hilbert space without loss of information. Recently, the kernel Stein discrepancy (KSD), which combines Stein's method with kernel techniques, gained considerable attention. Through the Stein operator, KSD allows the construction of powerful goodness-of-fit tests where it is sufficient to know the target distribution up to a multiplicative constant. However, the typical U- and V-statistic-based KSD estimators suffer from a quadratic runtime complexity, which hinders their application in large-scale settings. In this work, we propose a Nystr\"om-based KSD acceleration -- with runtime $\mathcal O\!\left(mn+m^3\right)$ for $n$ samples and $m\ll n$ Nystr\"om points -- , show its $\sqrt{n}$-consistency under the null with a classical sub-Gaussian assumption, and demonstrate its applicability for goodness-of-fit testing on a suite of benchmarks.
- Abstract(参考訳): カーネル法はデータ科学と統計学において最も成功したアプローチの多くを基盤としており、情報を失うことなく再現されたカーネルヒルベルト空間の要素として確率測度を表現することができる。
近年、Steinの手法とカーネル技術を組み合わせたカーネルStein discrepancy (KSD) が注目されている。
スタイン作用素を通して、KSDは、目標分布を乗法定数まで知るのに十分であるような、強力な適合性テストの構築を可能にする。
しかし、典型的なU-およびV-StatisticベースのKSD推定器は2次実行時の複雑さに悩まされており、大規模な設定ではアプリケーションの動作を妨げている。
本研究では、Nystr\"om-based KSDAcceleration -- ランタイム $\mathcal O\!\left(mn+m^3\right)$ for $n$ sample and $m\ll n$ Nystr\om points -- を提案する。
関連論文リスト
- The Minimax Rate of HSIC Estimation for Translation-Invariant Kernels [0.0]
連続有界変換不変特性核を持つガウス環を含むボレル測度に対する$mathbb Rd$のHSIC推定の最小値が$mathcal O!left(n-1/2right)$であることを証明する。
論文 参考訳(メタデータ) (2024-03-12T15:13:21Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
カーネルベース最適輸送(OT)推定器は、サンプルからOT問題に対処するための代替的機能的推定手順を提供する。
SSN法は, 標準正規性条件下でのグローバル収束率$O (1/sqrtk)$, 局所二次収束率を達成できることを示す。
論文 参考訳(メタデータ) (2023-10-21T18:48:45Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Nystr\"om $M$-Hilbert-Schmidt Independence Criterion [0.0]
カーネルをユビキタスにする主な特徴は、 (i) 設計された領域の数、 (ii) カーネルに関連する関数クラスのヒルベルト構造、 (iii) 情報を失うことなく確率分布を表現する能力である。
我々は、Mge 2$のケースを処理し、その一貫性を証明し、その適用性を実証する代替のNystr"omベースのHSIC推定器を提案する。
論文 参考訳(メタデータ) (2023-02-20T11:51:58Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - A Fourier representation of kernel Stein discrepancy with application to
Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces [6.437931786032493]
Kernel Stein discrepancy (KSD) は、確率測度間の差異のカーネルベースの尺度である。
我々は、分離可能なヒルベルト空間に横たわるデータの一般性において、KSDを初めて解析する。
これにより、KSDが測定を分離できることを証明できるので、実際は有効である。
論文 参考訳(メタデータ) (2022-06-09T15:04:18Z) - KSD Aggregated Goodness-of-fit Test [38.45086141837479]
我々は、異なるカーネルで複数のテストを集約するKSDAggと呼ばれるテストを構築する戦略を導入する。
我々は、KSDAggのパワーに関する漸近的でない保証を提供する。
KSDAggは、他の最先端のKSDベースの適合性試験方法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-02T00:33:09Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Kernel Stein Discrepancy Descent [16.47373844775953]
Kernel Stein Discrepancy (KSD) は近年注目されている。
我々は、目標確率分布を$mathbbRd$上で近似するために、ワッサーシュタイン勾配流の特性について検討する。
これにより、直接実装可能な決定論的スコアベースのメソッドが、$pi$、KSD Descentからサンプリングされる。
論文 参考訳(メタデータ) (2021-05-20T19:05:23Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
モデルに基づく楽観的アルゴリズムであるKernel-UCBVIを導入する。
スパース報酬を伴う連続MDPにおける我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2020-04-12T12:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。