論文の概要: FPGA-based Distributed Union-Find Decoder for Surface Codes
- arxiv url: http://arxiv.org/abs/2406.08491v2
- Date: Wed, 02 Oct 2024 01:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:16:39.459952
- Title: FPGA-based Distributed Union-Find Decoder for Surface Codes
- Title(参考訳): FPGAによる表面符号の分散Union-Findデコーダ
- Authors: Namitha Liyanage, Yue Wu, Siona Tagare, Lin Zhong,
- Abstract要約: フォールトトレラントな量子コンピュータは、エラー訂正による指数的な減速を防ぐために、エラーの復号と修正を高速に行う必要がある。
並列計算資源を利用したUnion-Findデコーダの分散バージョンを報告する。
- 参考スコア(独自算出の注目度): 3.780617572622938
- License:
- Abstract: A fault-tolerant quantum computer must decode and correct errors faster than they appear to prevent exponential slowdown due to error correction. The Union-Find (UF) decoder is promising with an average time complexity slightly higher than $O(d^3)$. We report a distributed version of the UF decoder that exploits parallel computing resources for further speedup. Using an FPGA-based implementation, we empirically show that this distributed UF decoder has a sublinear average time complexity with regard to $d$, given $O(d^3)$ parallel computing resources. The decoding time per measurement round decreases as $d$ increases, the first time for a quantum error decoder. The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure. Using a Xilinx VCU129 FPGA, we successfully implement $d$ up to 21 with an average decoding time of 11.5 ns per measurement round under 0.1\% phenomenological noise, and 23.7 ns for $d=17$ under equivalent circuit-level noise. This performance is significantly faster than any existing decoder implementation. Furthermore, we show that Helios can optimize for resource efficiency by decoding $d=51$ on a Xilinx VCU129 FPGA with an average latency of 544ns per measurement round.
- Abstract(参考訳): フォールトトレラントな量子コンピュータは、エラー訂正による指数的な減速を防ぐために、エラーの復号と修正を高速に行う必要がある。
Union-Find (UF) デコーダは平均時間複雑性が$O(d^3)$よりわずかに高いことを約束している。
並列計算資源を利用してさらなる高速化を行うUFデコーダの分散バージョンについて報告する。
FPGAベースの実装を用いて,この分散UFデコーダが$d$,$O(d^3)$並列コンピューティングリソースに対して,サブ線形平均時間複雑性を有することを実証的に示す。
測定ラウンドあたりの復号時間は、量子エラー復号器の初回である$d$が増加するにつれて減少する。
この実装では、並列コンピューティングリソースをハイブリッドツリーグリッド構造に整理する、Heliosと呼ばれるスケーラブルなアーキテクチャを採用している。
Xilinx VCU129 FPGAを用いて、平均復号時間11.5 ns を0.1 % の現象雑音で、23.7 ns for $d=17$ を等価回路レベルの雑音で実装した。
この性能は既存のデコーダ実装よりもはるかに高速である。
さらに,Helios は Xilinx VCU129 FPGA 上で$d=51$ をデコードすることで資源効率を最適化できることを示す。
関連論文リスト
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Fast and Parallelizable Logical Computation with Homological Product Codes [3.4338109681532027]
高速量子低密度パリティチェック(qLDPC)符号は、量子ビット数を減少させるルートを約束するが、低空間コストを維持しながら計算を行うには、演算のシリアライズと余分な時間コストが必要である。
我々はqLDPC符号の高速かつ並列化可能な論理ゲートを設計し、量子加算器のようなアルゴリズム上の重要なサブルーチンに対するその有用性を実証した。
論文 参考訳(メタデータ) (2024-07-26T03:49:59Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
LLM(Large Language Models)の自動回帰デコーディングは、ハードウェアの性能に大きなオーバーヘッドをもたらす。
トレーニング可能なパラメータを0.0002$%しか必要とせず,A100-40GBのGPUをたった16時間で効率的にトレーニングできる並列プロンプトデコーディングを提案する。
我々のアプローチでは、最大2.49$times$ スピードアップを示し、最小のメモリオーバーヘッドは0.0004$%である。
論文 参考訳(メタデータ) (2024-05-28T22:19:30Z) - TCNCA: Temporal Convolution Network with Chunked Attention for Scalable
Sequence Processing [52.64837396100988]
MEGAは最近のトランスフォーマーベースのアーキテクチャで、線形リカレント演算子を使用し、並列計算はFFTに基づいて、$O(LlogL)$で、$L$はシーケンス長である。
線形再帰を特別な時間的畳み込みネットワークに置き換えることで、より浅いネットワークでより大きい受容場を許容し、計算複雑性を$O(L)$に減らし、それらのアプローチを構築する。
我々は,EnWik8言語モデリングにおけるTCNCA,LRA(Long-range-arena)シーケンス分類,および合成推論ベンチマーク連想リコールの評価を行った。
論文 参考訳(メタデータ) (2023-12-09T16:12:25Z) - A Scalable, Fast and Programmable Neural Decoder for Fault-Tolerant
Quantum Computation Using Surface Codes [12.687083899824314]
量子誤り訂正符号(Quantum error-correcting codes, QECCs)は、量子アルゴリズムの実行の大きな障害である量子ノイズの負の効果を排除できる。
回転曲面符号(RSC)に対するFTQECの要件を満たすスケーラブルで高速でプログラム可能なニューラルデコーディングシステムを提案する。
本システムでは,197 nsのデコード遅延を極端に低くし,その精度はMWPMに近い。
論文 参考訳(メタデータ) (2023-05-25T06:23:32Z) - Scalable Quantum Error Correction for Surface Codes using FPGA [67.74017895815125]
フォールトトレラントな量子コンピュータは、出現するよりも早くデコードし、エラーを修正する必要がある。
並列計算資源を利用したUnion-Findデコーダの分散バージョンを報告する。
この実装では、並列コンピューティングリソースをハイブリッドツリーグリッド構造に整理する、Heliosと呼ばれるスケーラブルなアーキテクチャを採用している。
論文 参考訳(メタデータ) (2023-01-20T04:23:00Z) - Parallel window decoding enables scalable fault tolerant quantum
computation [2.624902795082451]
本稿では,デコード問題を並列化し,ほぼ任意のシンドローム処理速度を実現する手法を提案する。
並列化では、古典的なフィードバックの決定を遅らせる必要があり、論理クロックの速度が遅くなる。
既知のオート・テレポーテーション・ガジェットを使用すれば、キュービットオーバーヘッドの増加と引き換えに、スローダウンを完全に排除することができる。
論文 参考訳(メタデータ) (2022-09-18T12:37:57Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) は、歩行者を分離したカメラで識別する。
実値特徴記述子を用いた既存のReID法は精度が高いが、ユークリッド距離計算が遅いため効率が低い。
本稿では,ReID 処理を 0.25 倍高速化するサブスペース一貫性規則化 (SCR) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-13T02:44:05Z) - Private Frequency Estimation via Projective Geometry [47.112770141205864]
そこで本研究では,局所微分型(LDP)周波数推定のための新しいアルゴリズムであるProjectiveGeometryResponse (PGR)を提案する。
私たちの$varepsilon$-LDPアルゴリズムは、プライベートコイン設定で$lceillogkrceilビット、パブリックコイン設定で$varepsilonlog e + O(1)$の通信コストを持っています。
実際に使用される多くのパラメータ設定では、これは最近のPIによって達成されるO(n+k2)$Optimalコストよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-03-01T02:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。