論文の概要: Exploring Fact Memorization and Style Imitation in LLMs Using QLoRA: An Experimental Study and Quality Assessment Methods
- arxiv url: http://arxiv.org/abs/2406.08582v1
- Date: Wed, 12 Jun 2024 18:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:17:23.748771
- Title: Exploring Fact Memorization and Style Imitation in LLMs Using QLoRA: An Experimental Study and Quality Assessment Methods
- Title(参考訳): QLoRAを用いたLCMのファクト記憶とスタイル模倣の探索:実験的検討と品質評価方法
- Authors: Eugene Vyborov, Oleksiy Osypenko, Serge Sotnyk,
- Abstract要約: PEFT手法の1つであるQLoRAを用いてモデルを適用する可能性を検討する。
この実験は、インタビューに基づいて人間の反応をシミュレートすることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are various methods for adapting LLMs to different domains. The most common methods are prompting, finetuning, and RAG. In this work, we explore the possibility of adapting a model using one of the PEFT methods - QLoRA. The experiment aims to simulate human responses based on their interviews. The simulation quality is assessed by comparing the quality of the style and the quality of the generated facts.
- Abstract(参考訳): LLMを異なる領域に適応させる方法は様々である。
最も一般的な方法は、プロンプト、微調整、RAGである。
本研究では,PEFT手法の1つであるQLoRAを用いてモデルを適用する可能性を検討する。
この実験は、インタビューに基づいて人間の反応をシミュレートすることを目的としている。
シミュレーション品質は、そのスタイルの質と生成された事実の質を比較して評価する。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Enhancing LLM Evaluations: The Garbling Trick [0.0]
大規模言語モデル(LLM)はますます強力になり、パフォーマンスに基づいたモデルの区別が困難になる。
本稿では,既存のLCM評価を,段階的に困難なタスクに変換する一般的な手法を提案する。
結果から,これらのモデルの比較推論能力,特に OpenAI の o1-preview と Google の gemini-pro-1.5 の区別が明らかになった。
論文 参考訳(メタデータ) (2024-11-03T11:39:50Z) - AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
エージェント-CQは、世代ステージと評価ステージの2つのステージから構成される。
CrowdLLMは、人間のクラウドソーシング判断をシミュレートして、生成された質問や回答を評価する。
ClariQデータセットの実験では、質問と回答の品質を評価するCrowdLLMの有効性が示されている。
論文 参考訳(メタデータ) (2024-10-25T17:06:27Z) - LLaVA-Critic: Learning to Evaluate Multimodal Models [110.06665155812162]
本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。
LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2024-10-03T17:36:33Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
再現可能な言語モデル評価のための実用的でオープンな標準であるOLMESを提案する。
我々は,コミュニティが採用する評価実践において,様々な要因を特定し,検討する。
OLMESは、複数の質問の非自然な「閉じた」定式化を必要とする小さなベースモデル間の有意義な比較をサポートする。
論文 参考訳(メタデータ) (2024-06-12T17:37:09Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain
Conversations with Large Language Models [28.441725610692714]
大規模言語モデル(LLM)を用いたオープンドメイン会話のための多次元自動評価手法を提案する。
単一のモデルコールにおける会話品質の多次元を網羅する統合評価スキーマを利用する単一プロンプトベースの評価手法を設計する。
各種ベンチマークデータセットを用いたLCM-Evalの性能評価を行い,その有効性,効率,適応性について,最先端評価法と比較した。
論文 参考訳(メタデータ) (2023-05-23T05:57:09Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z) - The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior in
Reinforcement Learning [21.967763416902265]
本稿では,RL手法のモデルベース動作を評価するための実験装置を提案する。
我々のメトリクスは、たとえ手法が表現に乏しいとしても、モデルに基づく振る舞いを識別できる。
我々は、従来のマウンテンカータスクのバリエーションに基づいて、MuZeroのモデルに基づく振る舞いを評価するためにセットアップを使用する。
論文 参考訳(メタデータ) (2020-07-07T01:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。