論文の概要: Injecting Combinatorial Optimization into MCTS: Application to the Board Game boop
- arxiv url: http://arxiv.org/abs/2406.08766v1
- Date: Thu, 13 Jun 2024 02:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:38:10.859637
- Title: Injecting Combinatorial Optimization into MCTS: Application to the Board Game boop
- Title(参考訳): MCTSにコンビニティアル最適化を注入する - ボードゲームブープへの応用
- Authors: Florian Richoux,
- Abstract要約: Combinatorial OptimizationとMonte Carlo Tree Searchを効率的に組み合わせることができる。
我々の手法はモンテカルロ木探索アルゴリズムのベースラインの96%を上回りました。
我々は,ボードゲームアリーナプラットフォーム上での人間プレイヤーに対するAI手法に反対した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Games, including abstract board games, constitute a convenient ground to create, design, and improve new AI methods. In this field, Monte Carlo Tree Search is a popular algorithm family, aiming to build game trees and explore them efficiently. Combinatorial Optimization, on the other hand, aims to model and solve problems with an objective to optimize and constraints to satisfy, and is less common in Game AI. We believe however that both methods can be combined efficiently, by injecting Combinatorial Optimization into Monte Carlo Tree Search to help the tree search, leading to a novel combination of these two techniques. Tested on the board game boop., our method beats 96% of the time the Monte Carlo Tree Search algorithm baseline. We conducted an ablation study to isolate and analyze which injections and combinations of injections lead to such performances. Finally, we opposed our AI method against human players on the Board Game Arena platform, and reached a 373 ELO rating after 51 boop. games, with a 69% win rate and finishing ranked 56th worldwide on the platform over 5,316 boop. players.
- Abstract(参考訳): 抽象的なボードゲームを含むゲームは、新しいAIメソッドを作成し、設計し、改善するための便利な場を構成します。
この分野では、Monte Carlo Tree Searchは人気のあるアルゴリズムファミリーであり、ゲームツリーを構築し、それらを効率的に探索することを目的としている。
一方、Y Combinatorial Optimizationは、最適化と制約を満足させる目的で問題をモデル化し、解決することを目的としており、Game AIでは一般的ではない。
しかし,モンテカルロ木探索にコンビニアル最適化を注入して木探索を支援することにより,この2つの手法を新たに組み合わせることにより,両手法を効率的に組み合わせることができると考えている。
ボードゲームブープでテストされました。
提案手法はモンテカルロ木探索アルゴリズムのベースラインの96%を突破する。
そこで我々は,どの注射と組み合わせがどのような効果をもたらすかを分離し,分析するためにアブレーション研究を行った。
最後に,ボードゲームアリーナプラットフォーム上での人間選手に対するAI手法に反対し,51ブープ以降の373ELO評価に達した。
ゲームは69%の勝利率で 世界で56位にランクイン 5,316回以上
プレイヤー
関連論文リスト
- Scattered Forest Search: Smarter Code Space Exploration with LLMs [55.71665969800222]
Scattered Forest Searchを導入し,ソリューションを探索しながら解の多様性を高める。
HumanEval、MBPP、APPS、CodeContests、Leetcodeの実験では、大幅なパフォーマンス向上が示されている。
論文 参考訳(メタデータ) (2024-10-22T01:58:29Z) - Multi-agent Multi-armed Bandits with Stochastic Sharable Arm Capacities [69.34646544774161]
我々は、各アームへのリクエストの到着とプレイヤーへのリクエストの割り当てポリシーをキャプチャするマルチプレイヤーマルチアーム・バンディット(MAB)モデルの新しいバリエーションを定式化する。
課題は、プレイヤーが最適な腕引きプロファイルに従って腕を選択するように分散学習アルゴリズムを設計する方法である。
我々は,Mラウンドのみの最適腕引きプロファイルにおいて,プレイヤーがコンセンサスに達することを保証した反復分散アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-08-20T13:57:00Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Know your Enemy: Investigating Monte-Carlo Tree Search with Opponent
Models in Pommerman [14.668309037894586]
強化学習(Reinforcement Learning)と組み合わせて、モンテカルロ木探索(Monte-Carlo Tree Search)はChess、Shogi、Goといったゲームにおいて、人間のグランドマスターよりも優れていることを示した。
汎用マルチプレイヤーゲームからシングルプレイヤーゲームと2プレイヤーゲームに変換する手法について検討する。
論文 参考訳(メタデータ) (2023-05-22T16:39:20Z) - Proof Number Based Monte-Carlo Tree Search [1.93674821880689]
本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
本研究は,MCTS木に蓄積された証明値と防腐数から得られる付加的な知識を活用可能な3つの領域を定義する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
論文 参考訳(メタデータ) (2023-03-16T16:27:07Z) - MCTS Based Agents for Multistage Single-Player Card Game [0.0]
この記事では、カードゲームLord of the RingsにおけるMonte Carlo Tree Searchアルゴリズムの使用について紹介する。
主な課題はゲーム力学の複雑さであり、各ラウンドは5つの決定段階と2つのランダムステージから構成される。
様々な意思決定アルゴリズムをテストするために,ゲームシミュレータが実装されている。
論文 参考訳(メタデータ) (2021-09-24T10:56:54Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
我々は、同時移動と大規模なステートアクションスペースでマルチプレイヤーの不完全な情報ゲームをプレイする学習を検討します。
我々のアプローチはモデルに基づく計画に基づいている。
我々は,Clash Royale と Pommerman のゲームにおいて,プランナーが効率的なプレイ戦略を発見することができることを示す。
論文 参考訳(メタデータ) (2020-12-22T17:29:57Z) - Monte Carlo Tree Search for a single target search game on a 2-D lattice [0.0]
このプロジェクトは、AIプレイヤーが2次元格子内で静止目標を探索するゲームを想像する。
動物捕食行動のモデルであるレヴィ飛行探索(Levi Flight Search)と比較した。
論文 参考訳(メタデータ) (2020-11-29T01:07:45Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
モンテカルロ・ツリー・サーチ(MCTS)と深部強化学習の組み合わせは,2プレイヤー完全情報ゲームにおける最先端の手法である。
本稿では,MCTS の変種を利用した探索アルゴリズムについて述べる。1) 潜在的に有界な報酬を持つゲームに対する新たなアクション値正規化機構,2) 効果的な探索並列化を可能にする仮想損失関数の定義,3) 世代ごとのセルフプレイによって訓練されたポリシーネットワークについて述べる。
論文 参考訳(メタデータ) (2020-05-22T18:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。