論文の概要: CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
- arxiv url: http://arxiv.org/abs/2406.09056v1
- Date: Thu, 13 Jun 2024 12:43:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:05:18.517259
- Title: CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
- Title(参考訳): CUDRT:人間対大言語モデル生成テキストのベンチマーク
- Authors: Zhen Tao, Zhiyu Li, Dinghao Xi, Wei Xu,
- Abstract要約: 本稿では,主要なAI生成テキスト検出器を評価するために,中国語と英語の総合的なベンチマークを構築した。
テキスト生成は、Create、Update、Delete、Rewrite、Translateの5つの異なる操作に分類します。
各CUDRTカテゴリに対して,検出性能を徹底的に評価するための広範囲なデータセットを開発した。
- 参考スコア(独自算出の注目度): 10.027843402296678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.
- Abstract(参考訳): 大規模言語モデル(LLM)の普及は、様々な産業でテキスト生成能力を大幅に向上させた。
しかしながら、これらのモデルが人間のようなテキストを生成する能力は、人間とAIの著者の区別に重大な課題をもたらす。
既存のAI生成テキスト検出器の有効性にもかかわらず、その開発は包括的な公開ベンチマークの欠如によって妨げられている。
現在のベンチマークは、質問応答やテキスト研磨のような特定のシナリオに限定されており、主に英語のテキストに焦点を当てており、LLMの多様な応用や言語的ニュアンスを捉えていない。
これらの制約に対処するために、中国語と英語の両方で包括的なバイリンガル・ベンチマークを構築し、主流のAI生成テキスト検出器を評価する。
LLMのテキスト生成は、Create, Update, Delete, Rewrite, Translate(CUDRT)の5つの異なる操作に分類する。
また、スケーラブルで再現可能な実験をサポートするために、堅牢なベンチマーク評価フレームワークを構築しました。
各CUDRTカテゴリに対して,検出性能を徹底的に評価するための広範囲なデータセットを開発した。
各言語固有の最新のLLMを利用することで、データセットは徹底的な評価環境を提供する。
大規模な実験結果は、AI生成したテキスト検出器を最適化するための重要な洞察を与え、様々なシナリオにおける検出精度と一般化性を改善するための今後の研究方向を提案する。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
既存のAI生成テキスト検出モデルでは、ドメイン内のオーバーフィットが難しくなる。
LLM-Detectorは文書レベルと文レベルのテキスト検出のための新しい手法である。
論文 参考訳(メタデータ) (2024-02-02T05:54:12Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを大幅に進歩させた。
近年の研究では、中程度のLLMはタスク固有の微調整後、より大きなLLMよりも優れていることが示されている。
本研究では,特定の言語対に対する文書レベルの機械翻訳(DocMT)にLLMを適用することに焦点を当てた。
論文 参考訳(メタデータ) (2024-01-12T09:29:13Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - MEGA: Multilingual Evaluation of Generative AI [23.109803506475174]
生成AIモデルは、多くの自然言語処理タスクで素晴らしいパフォーマンスを示している。
LLMのほとんどの研究は英語に限られている。
これらのモデルが、他の言語でのテキストの理解と生成にどの程度の能力があるかは定かではない。
論文 参考訳(メタデータ) (2023-03-22T13:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。