論文の概要: EquiPrompt: Debiasing Diffusion Models via Iterative Bootstrapping in Chain of Thoughts
- arxiv url: http://arxiv.org/abs/2406.09070v1
- Date: Thu, 13 Jun 2024 12:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:05:18.494617
- Title: EquiPrompt: Debiasing Diffusion Models via Iterative Bootstrapping in Chain of Thoughts
- Title(参考訳): EquiPrompt: 思考の連鎖における反復的ブートストラップによる拡散モデルのデバイアス
- Authors: Zahraa Al Sahili, Ioannis Patras, Matthew Purver,
- Abstract要約: EquiPromptは、テキストから画像への生成モデルにおけるバイアスを減らすために、Chain of Thought (CoT)推論を用いた新しい手法である。
反復的なブートストラップとバイアス対応の選択を統合し、創造性と倫理的責任のバランスを取る。
- 参考スコア(独自算出の注目度): 14.632649933582648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of text-to-image generative models, the inadvertent propagation of biases inherent in training datasets poses significant ethical challenges, particularly in the generation of socially sensitive content. This paper introduces EquiPrompt, a novel method employing Chain of Thought (CoT) reasoning to reduce biases in text-to-image generative models. EquiPrompt uses iterative bootstrapping and bias-aware exemplar selection to balance creativity and ethical responsibility. It integrates iterative reasoning refinement with controlled evaluation techniques, addressing zero-shot CoT issues in sensitive contexts. Experiments on several generation tasks show EquiPrompt effectively lowers bias while maintaining generative quality, advancing ethical AI and socially responsible creative processes.Code will be publically available.
- Abstract(参考訳): テキスト・ツー・イメージ生成モデル(英語版)の領域では、トレーニングデータセットに固有のバイアスの意図しない伝播は、特に社会的に敏感なコンテンツの生成において重大な倫理的課題を引き起こす。
本稿では,テキスト・ツー・イメージ生成モデルにおけるバイアスを低減するために,思考の連鎖(CoT)推論を用いた新しい手法であるEquiPromptを紹介する。
EquiPromptは反復的なブートストラップとバイアス対応の模範選択を使用して、創造性と倫理的責任のバランスを取る。
反復的推論改善と制御された評価手法を統合し、センシティブな文脈におけるゼロショットCoT問題に対処する。
数世代にわたるタスクの実験では、EquiPromptは、生成品質を維持しながらバイアスを効果的に減らし、倫理的AIと社会的に責任を負う創造プロセスを前進させ、コードは一般公開される。
関連論文リスト
- Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models [0.0]
テキスト・トゥ・イメージ(TTI)システムは、社会的偏見に対する精査が増加している。
組込み空間をTTIモデルのバイアス源として検討する。
CLIPのような偏りのあるマルチモーダル埋め込みは、表現バランスの取れたTTIモデルに対して低いアライメントスコアをもたらす。
論文 参考訳(メタデータ) (2024-09-15T01:09:55Z) - Enhancing Fairness in Neural Networks Using FairVIC [0.0]
自動意思決定システム、特にディープラーニングモデルにおけるバイアスの緩和は、公平性を達成する上で重要な課題である。
FairVICは、トレーニング段階で固有のバイアスに対処することによって、ニューラルネットワークの公平性を高めるために設計された革新的なアプローチである。
我々は、モデルの精度を有害な程度に向上させることなく、テスト対象のすべての指標の公平性を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Steering Language Generation: Harnessing Contrastive Expert Guidance and
Negative Prompting for Coherent and Diverse Synthetic Data Generation [0.0]
大規模言語モデル(LLM)は、高品質で実用性の高い合成データを生成する大きな可能性を秘めている。
本稿では,細調整された言語モデルと基本言語モデルのロジット分布の違いを強調する,対照的な専門家指導を紹介する。
STEER: Embedding Repositioningによるセマンティックテキストの強化。
論文 参考訳(メタデータ) (2023-08-15T08:49:14Z) - Multi-modal Latent Diffusion [8.316365279740188]
多モード変分オートエンコーダ(Multi-modal Variational Autoencoder)は、様々なモダリティの合同表現を学習することを目的とした、一般的なモデルのファミリーである。
既存のアプローチはコヒーレンス品質のトレードオフに悩まされており、優れた世代品質のモデルはモダリティ間で生成コヒーレンスを欠いている。
独立に訓練された一様・一様・決定論的オートエンコーダの集合を用いる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T14:16:44Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
生成した画像と実世界の画像の間にはドメインギャップがあり、これは実世界の画像の高品質なバリエーションを生成する上での課題である。
実世界画像のアライメントによる変化(RIVAL)と呼ばれる新しい推論パイプラインを提案する。
我々のパイプラインは、画像生成プロセスとソース画像の反転チェーンを整列させることにより、画像の変動の生成品質を向上させる。
論文 参考訳(メタデータ) (2023-05-30T04:09:47Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。