論文の概要: Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
- arxiv url: http://arxiv.org/abs/2408.08105v1
- Date: Thu, 15 Aug 2024 12:04:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:05:59.295378
- Title: Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images
- Title(参考訳): マルチモーダル因果推論ベンチマーク:シームズ画像間の因果関係を推測する視覚大言語モデル
- Authors: Zhiyuan Li, Heng Wang, Dongnan Liu, Chaoyi Zhang, Ao Ma, Jieting Long, Weidong Cai,
- Abstract要約: 我々は,Multimodal Causal Reasoningベンチマーク,すなわち MuCR を提案し,大規模言語モデルに挑戦する。
具体的には,セマンティック因果関係と視覚的手がかりを組み込んだシアム画像を作成するための,プロンプト駆動画像合成手法を提案する。
我々の広範な実験により、現在最先端のVLLMは、我々が期待したようなマルチモーダル因果推論に熟練していないことが明らかとなった。
- 参考スコア(独自算出の注目度): 19.923665989164387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキスト情報からの因果推論において、例外的な能力を示した。
しかし、視覚的ヒントのみを提供する場合、これらの因果関係はVision Large Language Models (VLLMs) にとって依然として単純であるだろうか?
そこで本研究では,動作,外観,衣服,環境などの視覚的手がかりにのみ依存する場合に,意味的原因と効果の関係を推測するために,VLLMに挑戦する新しいマルチモーダル因果推論ベンチマークである MuCR を提案する。
具体的には、VLLMの因果推論能力を効果的に評価できる、セマンティック因果関係と視覚的手がかりを組み込んだシアム画像を作成するための、プロンプト駆動画像合成手法を提案する。
さらに、VLLMの理解能力を総合的に評価するために、画像レベルのマッチング、フレーズレベルの理解、文レベルの説明など、複数の視点から調整されたメトリクスを開発する。
我々の広範な実験により、現在最先端のVLLMは、我々が期待したようなマルチモーダル因果推論に熟練していないことが明らかとなった。
さらに、これらのモデルの欠点を異なる視点から理解し、今後の研究の方向性を示唆する包括的分析を行う。
マルチモーダル因果推論研究において, MuCR が貴重な資源および基礎ベンチマークとして機能することを願っている。
このプロジェクトは、https://github.com/Zhiyuan-Li-John/MuCRで入手できる。
関連論文リスト
- ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom [42.03770972100087]
本稿ではProReasonという新しいビジュアル推論フレームワークを紹介する。
ProReasonは、マルチランプロアクティブな知覚と分離されたビジョン推論機能を備えている。
実験の結果、ProReasonは既存のマルチステップ推論フレームワークとパッシブピアメソッドの両方より優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-18T03:22:06Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning [15.296263261737026]
マルチイメージMIRBベンチマークを導入し、複数の画像を比較し、分析し、推論する視覚言語モデルの能力を評価する。
私たちのベンチマークには、知覚、視覚世界知識、推論、マルチホップ推論の4つのカテゴリが含まれています。
オープンソースVLMはシングルイメージタスクにおいてGPT-4Vに接近することを示したが、マルチイメージ推論タスクでは大きなギャップが残っている。
論文 参考訳(メタデータ) (2024-06-18T16:02:18Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - RelationVLM: Making Large Vision-Language Models Understand Visual Relations [66.70252936043688]
本稿では,複数の画像にまたがっても動画内でも,様々なレベルの関係を解釈できる大規模視覚言語モデルであるRelationVLMを提案する。
具体的には,多段階的な関係認識学習手法とそれに対応するデータ構成戦略を考案し,意味的関係を理解する能力を備えた関係VLMを提案する。
論文 参考訳(メタデータ) (2024-03-19T15:01:19Z) - NPHardEval4V: A Dynamic Reasoning Benchmark of Multimodal Large Language
Models [34.91372939329467]
MLLMの純粋推論能力を評価するためのベンチマークであるNPHardEval4Vを導入する。
異なるモデルにまたがる推論能力に有意な差が認められた。
また,視覚,テキスト,視覚とテキストの組み合わせがMLLMの推論能力に与える影響についても検討した。
論文 参考訳(メタデータ) (2024-03-04T07:10:31Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
本稿では,知識に基づく視覚推論のための新しいフレームワークであるInteractive Prompting Visual Reasoner(IPVR)を提案する。
IPVRには3つのステージがある。
我々は,知識に基づく視覚的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-01-12T18:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。