論文の概要: ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- arxiv url: http://arxiv.org/abs/2406.09334v1
- Date: Thu, 13 Jun 2024 17:15:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:35:35.056524
- Title: ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models
- Title(参考訳): ProxyLM:プロキシモデルによる多言語タスクにおける言語モデルのパフォーマンス予測
- Authors: David Anugraha, Genta Indra Winata, Chenyue Li, Patrick Amadeus Irawan, En-Shiun Annie Lee,
- Abstract要約: ProxyLMは、多言語タスクでプロキシモデルを使用してLMパフォーマンスを予測するフレームワークである。
プロキシモデルを活用することにより、ProxyLMはタスク評価の計算オーバーヘッドを大幅に削減する。
本手法は、事前学習されたLMにおける未確認言語への適応性を示し、最先端の性能を1.89倍に向上させる。
- 参考スコア(独自算出の注目度): 9.710960283117771
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Performance prediction is a method to estimate the performance of multilingual language models (LMs), mitigating computational costs associated with model capacity and data for fine-tuning. Our paper introduces ProxyLM, a scalable framework for predicting LM performance using proxy models in multilingual tasks. These proxy models act as surrogates, approximating the performance of fine-tuned LMs on specific downstream natural language processing (NLP) tasks. By leveraging proxy models, ProxyLM significantly reduces computational overhead on task evaluations, achieving up to a 37.08x speedup compared to traditional methods, even with our smallest proxy models. Additionally, our methodology showcases adaptability to previously unseen languages in pre-trained LMs, outperforming the state-of-the-art performance by 1.89x as measured by root-mean-square-error (RMSE). This framework streamlines model selection, enabling efficient deployment and iterative LM enhancements without extensive computational resources.
- Abstract(参考訳): 性能予測は多言語言語モデル(LM)の性能を推定し、モデル容量と微調整のためのデータに関連する計算コストを軽減する手法である。
本稿では,多言語タスクにおけるプロキシモデルを用いて,LM性能を予測するスケーラブルなフレームワークであるProxyLMを紹介する。
これらのプロキシモデルはサロゲートとして機能し、特定の下流自然言語処理(NLP)タスクで微調整されたLMの性能を近似する。
ProxyLMは、プロキシモデルを活用することにより、タスク評価の計算オーバーヘッドを大幅に削減し、最小のプロキシモデルであっても、従来の手法と比較して37.08倍の高速化を実現します。
さらに,本手法は,事前学習したLMにおける未確認言語への適応性を示し,ルート平均二乗誤差(RMSE)によって測定された最先端性能を1.89倍に向上させる。
このフレームワークはモデル選択を合理化し、広範囲の計算資源を使わずに効率的なデプロイメントと反復的なLM拡張を可能にする。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
textbfGPTスケールモデルをマージするための textbfModel textbfExclusive textbfTask textbfArithmetic を提案する。
提案するMetaGPTは,データに依存しず,検索処理を回避し,低コストで実装が容易なメタGPTである。
論文 参考訳(メタデータ) (2024-06-17T10:12:45Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - AXOLOTL: Fairness through Assisted Self-Debiasing of Large Language
Model Outputs [20.772266479533776]
AXOLOTLはタスクやモデル間で不可知的に動作する新しい後処理フレームワークである。
バイアスを識別し、解像度を提案し、モデルにアウトプットを自己バイアスさせる。
このアプローチは計算コストを最小化し、モデル性能を保存する。
論文 参考訳(メタデータ) (2024-03-01T00:02:37Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
本研究では,文埋め込み性能の向上を目的としたテキスト内学習手法を提案する。
提案手法では,従来のプロンプトに基づく表現手法を自己回帰モデルに適用する。
モデルサイズをスケールすることで、数千億以上のパラメータへのスケーリングが意味的なテキスト類似性タスクのパフォーマンスを損なうことが分かる。
論文 参考訳(メタデータ) (2023-07-31T13:26:03Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (2022-04-05T16:11:45Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Maximizing Efficiency of Language Model Pre-training for Learning
Representation [6.518508607788086]
ELECTRAは、事前訓練された言語モデルの計算効率を改善するための新しいアプローチである。
本研究は,事前学習プロセスの効率を最大化する適応早期終了戦略を提案する。
論文 参考訳(メタデータ) (2021-10-13T10:25:06Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。