論文の概要: Integrated Modeling, Verification, and Code Generation for Unmanned Aerial Systems
- arxiv url: http://arxiv.org/abs/2406.09485v1
- Date: Thu, 13 Jun 2024 14:53:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:34:26.737435
- Title: Integrated Modeling, Verification, and Code Generation for Unmanned Aerial Systems
- Title(参考訳): 無人航空システムのための統合モデリング・検証・コード生成
- Authors: Jianyu Zhang, Long Zhang, Yixuan Wu, Linru Ma, Feng Yang,
- Abstract要約: 無人航空システム(UAS)は、産業生産、軍事作戦、災害救助などの安全上重要な分野で広く利用されている。
本稿では,UASのモデリング,検証,コード生成に対する統合的なアプローチを検討することを目的とする。
- 参考スコア(独自算出の注目度): 10.292890852621346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Systems (UAS) are currently widely used in safety-critical fields such as industrial production, military operations, and disaster relief. Due to the diversity and complexity of application scenarios, UAS have become increasingly intricate. The challenge of designing and implementing highly reliable UAS while effectively controlling development costs and enhancing efficiency is a pressing issue faced by both academia and industry. Addressing this challenge, this paper aims to investigate an integrated approach to modeling, verification, and code generation for UAS. The paper begins by utilizing Architecture Analysis and Design Language (AADL) to model the UAS, proposing a set of generic UAS models. Based on these models, formal specifications are written to describe the system's safety properties and functions. Finally, the paper introduces a method for generating flight controller code for UAS based on the verified models. Experiments conducted with the proposed method demonstrate its effectiveness in identifying potential vulnerabilities in the UAS during the early design phase and in generating viable flight controller code from the verified models. This approach can enhance the efficiency of designing and verifying high-reliability UAS.
- Abstract(参考訳): 無人航空システム(UAS)は現在、産業生産、軍事作戦、災害救助などの安全上重要な分野で広く利用されている。
アプリケーションシナリオの多様性と複雑さのため、UASはますます複雑になっています。
開発コストを効果的に制御し、効率を向上しつつ、高度に信頼性の高いUASを設計・実装することの課題は、学術と産業の両方が直面している課題である。
本稿では,UASのモデリング,検証,コード生成への統合的アプローチを検討することを目的とする。
この論文は、アーキテクチャ分析と設計言語(AADL)を用いてUASをモデル化し、一連のUASモデルを提案することから始まる。
これらのモデルに基づいて、システムの安全性と機能を記述するために正式な仕様が書かれています。
最後に、検証モデルに基づいて、UASのフライトコントローラコードを生成する方法を提案する。
提案手法を用いて行った実験は,UASの初期設計段階での潜在的な脆弱性の同定と,検証されたモデルから実行可能な飛行制御コードを生成する上での有効性を示す。
このアプローチは、高信頼性UASの設計と検証の効率を高めることができる。
関連論文リスト
- Search, Verify and Feedback: Towards Next Generation Post-training Paradigm of Foundation Models via Verifier Engineering [51.31836988300326]
検証工学は、基礎モデルの時代のために特別に設計された新しいポストトレーニングパラダイムである。
検証工学のプロセスは,検索,検証,フィードバックの3段階に分類する。
論文 参考訳(メタデータ) (2024-11-18T12:04:52Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
本稿では、SOTIF因果モデルの改良として、STEAM(SotIF Temporal Error and Failure Model)を定義した。
第2に,システム設計モデルに基づくSTEAMのインスタンス化が可能なモデルベースSOTIF解析法(MoSAFE)を提案する。
論文 参考訳(メタデータ) (2023-12-15T06:34:35Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
テスト、検証、検証 AD/ADASセーフティクリティカルなアプリケーションが大きな課題のひとつとして残っています。
安全クリティカルな学習可能システムの検証と検証を目的としたシミュレーションベースの開発プラットフォームについて説明する。
論文 参考訳(メタデータ) (2023-09-28T09:00:31Z) - A Logic Programming Approach to Global Logistics in a Co-Design
Environment [0.0]
本稿では,旅客機構築のためのグローバルロジスティクスシステムの構築と最適化の課題について考察する。
問題の製品は、世界中の複数の場所で製造される複数の部品からなる航空機である。
目標は、産業システムの要件を考慮して航空機を構築するための最適な方法を見つけることである。
論文 参考訳(メタデータ) (2023-08-30T09:06:34Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
次世代エッジインテリジェンスは、オフロード技術を通じて様々なアプリケーションに恩恵をもたらすことが期待されている。
従来のオフロードアーキテクチャは、不均一な制約、部分的な認識、不確実な一般化、トラクタビリティの欠如など、いくつかの問題に直面している。
我々は、これらの問題を解決するための10億以上のパラメータを持つLarge AI Model-Based Offloading (LAMBO)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:25:42Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - Hierarchical Variational Autoencoder for Visual Counterfactuals [79.86967775454316]
条件変量オート(VAE)は、説明可能な人工知能(XAI)ツールとして注目されている。
本稿では, 後部の効果がいかに緩和され, 対物的効果が成功するかを示す。
本稿では,アプリケーション内の分類器を視覚的に監査できる階層型VAEについて紹介する。
論文 参考訳(メタデータ) (2021-02-01T14:07:11Z) - Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation [1.8275108630751844]
進化的多目的最適化(EMO)アルゴリズムを用いて,実世界の産業制御システム(ICS)の脆弱性を同定する。
本手法は化学プラントシミュレータであるテネシー・イーストマン (TE) プロセスモデルを用いて評価した。
新たな侵入検知システムという形でこれらの攻撃に対する防御が開発された。
論文 参考訳(メタデータ) (2020-05-27T00:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。