論文の概要: Analyzing Gender Polarity in Short Social Media Texts with BERT: The Role of Emojis and Emoticons
- arxiv url: http://arxiv.org/abs/2406.09573v1
- Date: Thu, 13 Jun 2024 20:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:14:47.043807
- Title: Analyzing Gender Polarity in Short Social Media Texts with BERT: The Role of Emojis and Emoticons
- Title(参考訳): BERTを用いた短いソーシャルメディアテキストにおけるジェンダーポラリティの分析 : 絵文字とエモティコンの役割
- Authors: Saba Yousefian Jazi, Amir Mirzaeinia, Sina Yousefian Jazi,
- Abstract要約: 我々は,絵文字とエモティコンがモデルの性能に与える影響を分類タスクで分析した。
つぶやきのような短いテキスト形式で、他のアカウントへの言及と並んで、これらの単語入力を使用することが、アカウント所有者の性別を検出することに影響を及ぼすことを示した。
- 参考スコア(独自算出の注目度): 0.5461938536945723
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this effort we fine tuned different models based on BERT to detect the gender polarity of twitter accounts. We specially focused on analyzing the effect of using emojis and emoticons in performance of our model in classifying task. We were able to demonstrate that the use of these none word inputs alongside the mention of other accounts in a short text format like tweet has an impact in detecting the account holder's gender.
- Abstract(参考訳): この取り組みでは、BERTに基づいて異なるモデルを微調整し、Twitterアカウントの性別極性を検出する。
我々は特に,タスクの分類において,モデルの性能に絵文字とエモティコンを用いることの効果を分析することに重点を置いている。
つぶやきのような短いテキスト形式で、他のアカウントへの言及と並んで、これらの単語入力を使用することが、アカウント所有者の性別を検出することに影響を及ぼすことを示した。
関連論文リスト
- Emoji Prediction in Tweets using BERT [0.0]
本稿では,広く使われている事前学習型言語モデルであるBERTを用いた絵文字予測のためのトランスフォーマーに基づく手法を提案する。
我々はBERTをテキストと絵文字の両方を含む大量のテキスト(つぶやき)のコーパスで微調整し、与えられたテキストに対して最も適切な絵文字を予測する。
実験の結果,提案手法は,75%以上の精度で絵文字の予測において,最先端のモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-05T06:38:52Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
我々は、テキスト・ツー・イメージ・モデルにおいて、ジェンダーがどのように異なる形で提示されるかを研究する。
入力テキスト中の性指標を探索することにより、プレゼンテーション中心属性の周波数差を定量化する。
このような違いを推定する自動手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T18:52:22Z) - Emojich -- zero-shot emoji generation using Russian language: a
technical report [52.77024349608834]
エモジッチ(Emojich)は、ロシア語の字幕を条件として絵文字を生成するテキスト・画像ニューラルネットワークである。
我々は,事前訓練された大型モデルruDALL-E Malevich(XL) 1.3Bパラメータの微調整段階における一般化能力を維持することを目的としている。
論文 参考訳(メタデータ) (2021-12-04T23:37:32Z) - Emoji-aware Co-attention Network with EmoGraph2vec Model for Sentiment
Anaylsis [9.447106020795292]
我々はEmoGraph2vecと呼ばれる絵文字表現を学習し、絵文字対応のコアテンションネットワークを設計する手法を提案する。
我々のモデルは、テキストと絵文字を組み込むコアテンション機構を設計し、圧縮と励起ブロックを畳み込みニューラルネットワークに統合する。
実験結果から,提案モデルは,ベンチマークデータセットの感情分析において,いくつかのベースラインを上回り得ることが示された。
論文 参考訳(メタデータ) (2021-10-27T08:01:10Z) - Black or White but never neutral: How readers perceive identity from
yellow or skin-toned emoji [90.14874935843544]
近年の研究は、ソーシャルメディア上でのアイデンティティ表現と絵文字利用の関係を確立した。
この研究は、言語と同様に、読者がそのような自己表現の行為に敏感かどうかを問うもので、著者のアイデンティティを理解するために使用する。
論文 参考訳(メタデータ) (2021-05-12T18:23:51Z) - Identity Signals in Emoji Do not Influence Perception of Factual Truth
on Twitter [90.14874935843544]
以前の研究によると、Twitterユーザーは人種的・民族的アイデンティティを表現するために、自己表現の行為としてスキントーン絵文字を使っている。
この信号が、その信号を含む投稿の内容に対する読者の認識に影響を及ぼすかどうかを検証する。
絵文字もプロフィール写真も、読者がこれらの事実をどう評価するかに影響を与えていない。
論文 参考訳(メタデータ) (2021-05-07T10:56:19Z) - Semantic Journeys: Quantifying Change in Emoji Meaning from 2012-2018 [66.28665205489845]
絵文字のセマンティクスが時間とともにどのように変化するかに関する最初の縦断的研究を行い、計算言語学から6年間のtwitterデータに適用した。
絵文字のセマンティックな発達において5つのパターンを識別し、抽象的な絵文字がより少ないほど意味的変化を起こす可能性が高くなることを示す。
絵文字とセマンティクスに関する今後の作業を支援するために、私たちは、絵文字のセマンティックな変化を調べるために誰でも使用できるウェブベースのインターフェイスとともに、データを公開します。
論文 参考訳(メタデータ) (2021-05-03T13:35:10Z) - A `Sourceful' Twist: Emoji Prediction Based on Sentiment, Hashtags and
Application Source [1.6818451361240172]
モデルが関係する感情を理解し、テキストに最適な絵文字を予測するのを助けるためにTwitterの機能を使用することの重要性を紹介します。
データ分析とニューラルネットワークモデルのパフォーマンス評価は、ハッシュタグとアプリケーションソースを特徴として使用することで、異なる情報をエンコードすることができ、絵文字の予測に有効であることを示している。
論文 参考訳(メタデータ) (2021-03-14T03:05:04Z) - Assessing Emoji Use in Modern Text Processing Tools [35.79765461713127]
絵文字は視覚的魅力と人間の感情を鮮明に伝える能力から、デジタルコミュニケーションにおいてユビキタスになりつつある。
ソーシャルメディアや他のインスタントメッセージングにおける絵文字の普及は、絵文字を含むテキストを操作するシステムやツールの必要性も高まっている。
本研究では,絵文字を用いたツイートのテストセットを検討することで,このサポートを評価する。そこでは,著名なnlpおよびテキスト処理ツールが適切に処理できるかどうかについて,一連の実験を行う。
論文 参考訳(メタデータ) (2021-01-02T11:38:05Z) - Emoji Prediction: Extensions and Benchmarking [30.642840676899734]
絵文字予測タスクは、テキストに関連付けられた適切な絵文字セットを予測することを目的としている。
我々は、絵文字予測タスクの既存の設定を拡張し、よりリッチな絵文字セットを含め、複数ラベルの分類を可能にする。
トランスフォーマーネットワークに基づくマルチクラス・マルチラベル絵文字予測のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-07-14T22:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。