Reinforced Decoder: Towards Training Recurrent Neural Networks for Time Series Forecasting
- URL: http://arxiv.org/abs/2406.09643v1
- Date: Fri, 14 Jun 2024 00:24:29 GMT
- Title: Reinforced Decoder: Towards Training Recurrent Neural Networks for Time Series Forecasting
- Authors: Qi Sima, Xinze Zhang, Yukun Bao, Siyue Yang, Liang Shen,
- Abstract summary: Recurrent neural network-based sequence-to-sequence models have been extensively applied for multi-step-ahead time series forecasting.
These models typically involve a decoder trained using either its previous forecasts or the actual observed values as the decoder inputs.
This study proposes a novel training approach called reinforced decoder, which introduces auxiliary models to generate alternative decoder inputs.
- Score: 1.5213268724320657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural network-based sequence-to-sequence models have been extensively applied for multi-step-ahead time series forecasting. These models typically involve a decoder trained using either its previous forecasts or the actual observed values as the decoder inputs. However, relying on self-generated predictions can lead to the rapid accumulation of errors over multiple steps, while using the actual observations introduces exposure bias as these values are unavailable during the extrapolation stage. In this regard, this study proposes a novel training approach called reinforced decoder, which introduces auxiliary models to generate alternative decoder inputs that remain accessible when extrapolating. Additionally, a reinforcement learning algorithm is utilized to dynamically select the optimal inputs to improve accuracy. Comprehensive experiments demonstrate that our approach outperforms representative training methods over several datasets. Furthermore, the proposed approach also exhibits promising performance when generalized to self-attention-based sequence-to-sequence forecasting models.
Related papers
- Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders [56.47577824219207]
In this paper, we unveil the hidden costs associated with intrusive fine-tuning techniques.
We introduce a new model reprogramming approach for fine-tuning, which we name Reprogrammer.
Our empirical evidence reveals that Reprogrammer is less intrusive and yields superior downstream models.
arXiv Detail & Related papers (2024-03-16T04:19:48Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
We propose a new prediction framework based on deep neural networks and a trend filtering.
We reveal that the predictive performance of deep temporal neural networks improves when the training data is temporally processed by a trend filtering.
arXiv Detail & Related papers (2020-10-16T08:29:36Z) - Cross-Thought for Sentence Encoder Pre-training [89.32270059777025]
Cross-Thought is a novel approach to pre-training sequence encoder.
We train a Transformer-based sequence encoder over a large set of short sequences.
Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders.
arXiv Detail & Related papers (2020-10-07T21:02:41Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Hierarchical Predictive Coding Models in a Deep-Learning Framework [1.370633147306388]
We review some of the more well known models of predictive coding.
We also survey some recent attempts to cast these models within a deep learning framework.
arXiv Detail & Related papers (2020-05-07T03:39:57Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.