論文の概要: Asymmetrical Siamese Network for Point Clouds Normal Estimation
- arxiv url: http://arxiv.org/abs/2406.09681v2
- Date: Mon, 24 Jun 2024 15:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:13:51.667385
- Title: Asymmetrical Siamese Network for Point Clouds Normal Estimation
- Title(参考訳): 点雲正規推定のための非対称シームズネットワーク
- Authors: Wei Jin, Jun Zhou, Nannan Li, Haba Madeline, Xiuping Liu,
- Abstract要約: 本稿では、非対称なシームズネットワークアーキテクチャを用いて、クリーンでノイズの多い点群から学習した本質的な特徴の一貫性について検討する。
異なる枝から抽出された特徴間の合理的な制約を適用することにより、正規推定の品質を高める。
ノイズレベルの異なる様々な形状を含む新しい多視点正規推定データセットを提案する。
- 参考スコア(独自算出の注目度): 13.826173253686726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning-based point cloud normal estimation has made great progress. However, existing methods mainly rely on the PCPNet dataset, leading to overfitting. In addition, the correlation between point clouds with different noise scales remains unexplored, resulting in poor performance in cross-domain scenarios. In this paper, we explore the consistency of intrinsic features learned from clean and noisy point clouds using an Asymmetric Siamese Network architecture. By applying reasonable constraints between features extracted from different branches, we enhance the quality of normal estimation. Moreover, we introduce a novel multi-view normal estimation dataset that includes a larger variety of shapes with different noise levels. Evaluation of existing methods on this new dataset reveals their inability to adapt to different types of shapes, indicating a degree of overfitting. Extensive experiments show that the proposed dataset poses significant challenges for point cloud normal estimation and that our feature constraint mechanism effectively improves upon existing methods and reduces overfitting in current architectures.
- Abstract(参考訳): 近年,深層学習に基づくポイントクラウド正規化推定は大きな進歩を遂げている。
しかし、既存のメソッドは主にPCPNetデータセットに依存しており、オーバーフィッティングにつながっている。
さらに、異なるノイズスケールを持つ点雲間の相関は未解明のままであり、ドメイン横断のシナリオでは性能が低下する。
本稿では、非対称なシームズネットワークアーキテクチャを用いて、クリーンでノイズの多い点群から学習した本質的な特徴の一貫性について検討する。
異なる枝から抽出された特徴間の合理的な制約を適用することにより、正規推定の品質を高める。
さらに,ノイズレベルが異なる形状の多視点正規推定データセットについても紹介する。
この新たなデータセットにおける既存の手法の評価は、異なる種類の形状に適応できないことを示し、過剰適合の程度を示している。
大規模な実験により、提案データセットはポイントクラウドの正常な推定に重大な課題をもたらし、我々の特徴制約機構は既存の手法を効果的に改善し、現在のアーキテクチャにおける過度な適合を低減します。
関連論文リスト
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
我々のフレームワークは、初期指向の正規性を洗練させるために、特徴空間に符号配向とデータ拡張を組み込んでいる。
従来手法に存在した騒音による方向の不整合の問題に対処するため, チャンファー正規距離と呼ばれる新しい指標を導入する。
論文 参考訳(メタデータ) (2024-09-02T09:30:02Z) - CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal
Distance and Multi-scale Geometry [23.86650228464599]
この研究は、点雲から正規度を推定するための正確で堅牢な方法を示す。
まず,この問題に対処するため,シャンファー正規距離(Chamfer Normal Distance)と呼ばれる新しい尺度を提案する。
マルチスケールな局所的特徴集約と階層的幾何情報融合を含む革新的なアーキテクチャを考案する。
論文 参考訳(メタデータ) (2023-12-14T17:23:16Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA)は、新しくて効率的なデータ拡張技術である。
BAは、既存の3D構造にスムーズな非剛性変形を与えることにより、点雲データを多様化する。
本稿では,先進的なオンライン強化システムであるAdvTuneについて紹介する。
論文 参考訳(メタデータ) (2023-11-10T14:04:49Z) - Implicit neural representation for change detection [15.741202788959075]
点雲の変化を検出する最も一般的なアプローチは、教師付き手法に基づいている。
Inlicit Neural Representation (INR) for continuous shape reconstruction と Gaussian Mixture Model for categorising change の2つのコンポーネントからなる教師なしアプローチを提案する。
本手法を都市スプロールのためのシミュレーションLiDAR点雲からなるベンチマークデータセットに適用する。
論文 参考訳(メタデータ) (2023-07-28T09:26:00Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
我々は、パッチレベルでポイントクラウドを混合し、混合ポイントクラウドのコンテンツベースターゲットを生成するPointPatchMixを提案する。
パッチスコアリングモジュールは、事前学習した教師モデルから、コンテンツに基づく重要度スコアに基づいて目標を割り当てる。
Point-MAE をベースラインとして,ScanObjectNN では86.3%,ModelNet40 では94.1% の精度で,従来の手法をかなり上回りました。
論文 参考訳(メタデータ) (2023-03-12T14:49:42Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
本稿では,点雲上での新しい差分畳み込み探索パラダイムを提案する。
純粋にデータ駆動型であり、幾何学的形状モデリングに適した畳み込みのグループを自動生成することができる。
また,内部畳み込みと外部アーキテクチャの同時探索のための共同最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-29T14:42:03Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
本稿では,AdaFit という,雑音と密度の変動を伴う点雲に対処可能な,点雲上でのロバストな正規推定のためのニューラルネットワークを提案する。
既存の研究では、ネットワークを用いて最小表面の重み付けの点での重みを学習し、正規性を推定している。
そこで本研究では,通常の推定精度を向上させるために,新たなオフセット予測を付加する,シンプルで効果的な解を提案する。
論文 参考訳(メタデータ) (2021-08-12T16:37:24Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
本稿では,正規化フローを組み込んだPU-Flowについて述べる。
具体的には、重みが局所的な幾何学的文脈から適応的に学習される潜在空間において、アップサンプリング過程を点として定式化する。
提案手法は, 再現性, 近接精度, 計算効率の観点から, 最先端の深層学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-13T07:45:48Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
本稿では,学習ベースのポイントクラウド処理手法で発生する置換不変問題に対処可能なディープニューラルネットワークを提案する。
ネットワークは完全に畳み込み可能で、近傍グラフを動的に構築することで、機能の複雑な階層を構築することができる。
特に高騒音レベルと実LiDARスキャンで遭遇したような構造ノイズの存在の両方において堅牢である。
論文 参考訳(メタデータ) (2020-07-06T08:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。