論文の概要: AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds
- arxiv url: http://arxiv.org/abs/2108.05836v1
- Date: Thu, 12 Aug 2021 16:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-13 14:31:21.825608
- Title: AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds
- Title(参考訳): AdaFit: ポイントクラウドにおける学習に基づく正規推定の再考
- Authors: Runsong Zhu, Yuan Liu, Zhen Dong, Tengping Jiang, Yuan Wang, Wenping
Wang, Bisheng Yang
- Abstract要約: 本稿では,AdaFit という,雑音と密度の変動を伴う点雲に対処可能な,点雲上でのロバストな正規推定のためのニューラルネットワークを提案する。
既存の研究では、ネットワークを用いて最小表面の重み付けの点での重みを学習し、正規性を推定している。
そこで本研究では,通常の推定精度を向上させるために,新たなオフセット予測を付加する,シンプルで効果的な解を提案する。
- 参考スコア(独自算出の注目度): 31.641383879577894
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a neural network for robust normal estimation on point
clouds, named AdaFit, that can deal with point clouds with noise and density
variations. Existing works use a network to learn point-wise weights for
weighted least squares surface fitting to estimate the normals, which has
difficulty in finding accurate normals in complex regions or containing noisy
points. By analyzing the step of weighted least squares surface fitting, we
find that it is hard to determine the polynomial order of the fitting surface
and the fitting surface is sensitive to outliers. To address these problems, we
propose a simple yet effective solution that adds an additional offset
prediction to improve the quality of normal estimation. Furthermore, in order
to take advantage of points from different neighborhood sizes, a novel Cascaded
Scale Aggregation layer is proposed to help the network predict more accurate
point-wise offsets and weights. Extensive experiments demonstrate that AdaFit
achieves state-of-the-art performance on both the synthetic PCPNet dataset and
the real-word SceneNN dataset.
- Abstract(参考訳): 本稿では,AdaFit という,雑音と密度の変動を伴う点雲に対処可能な,点雲上でのロバストな正規推定のためのニューラルネットワークを提案する。
既存の研究はネットワークを用いて、重み付けされた最小二乗曲面の点重みを学習し、正規度を推定するが、これは複素領域の正確な正規度を見つけるのに困難である。
重み付けされた最小二乗表面フィッティングのステップを分析することで、嵌合面の多項式次数を決定することは困難であり、嵌合面は外れ値に敏感であることがわかった。
これらの問題に対処するため,我々は,正規推定の質を改善するために追加のオフセット予測を付加する,単純かつ効果的な解を提案する。
さらに, 異なる近傍の大きさの点を利用するために, ネットワークがより正確な点方向のオフセットと重みを予測できるように, 新たなカスケードスケールアグリゲーション層を提案する。
大規模な実験により、AdaFitは合成PCPNetデータセットと実単語SceneNNデータセットの両方で最先端のパフォーマンスを実現する。
関連論文リスト
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
非構造点雲から指向性正規項を推定するための頑健な精錬法を提案する。
我々のフレームワークは、初期指向の正規性を洗練させるために、特徴空間に符号配向とデータ拡張を組み込んでいる。
従来手法に存在した騒音による方向の不整合の問題に対処するため, チャンファー正規距離と呼ばれる新しい指標を導入する。
論文 参考訳(メタデータ) (2024-09-02T09:30:02Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
Voxel-based Network (textbfPU-VoxelNet) を用いた任意のスケールのクラウド・アップサンプリング・フレームワークを提案する。
ボクセル表現から継承された完全性と規則性により、ボクセルベースのネットワークは3次元表面を近似する事前定義されたグリッド空間を提供することができる。
密度誘導グリッド再サンプリング法を開発し、高忠実度点を生成するとともに、サンプリング出力を効果的に回避する。
論文 参考訳(メタデータ) (2024-03-08T07:31:14Z) - CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal
Distance and Multi-scale Geometry [23.86650228464599]
この研究は、点雲から正規度を推定するための正確で堅牢な方法を示す。
まず,この問題に対処するため,シャンファー正規距離(Chamfer Normal Distance)と呼ばれる新しい尺度を提案する。
マルチスケールな局所的特徴集約と階層的幾何情報融合を含む革新的なアーキテクチャを考案する。
論文 参考訳(メタデータ) (2023-12-14T17:23:16Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud
Normal Estimation [39.79759035338819]
推定値と精密表面標準値のギャップを埋めるための基本設計原則を2つ提示する。
この2つの原理をディープニューラルネットワークを用いて実装し、プラグアンドプレイ方式で最先端のSOTA(State-of-the-art)正規推定手法と統合する。
論文 参考訳(メタデータ) (2023-03-30T05:59:43Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
本稿では,ノイズと密度の変動のある点群から正規性を正確に予測できるHSurf-Netという新しい正規推定手法を提案する。
実験結果から, HSurf-Netは, 合成形状データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-10-13T16:39:53Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
本稿では,正規化フローを組み込んだPU-Flowについて述べる。
具体的には、重みが局所的な幾何学的文脈から適応的に学習される潜在空間において、アップサンプリング過程を点として定式化する。
提案手法は, 再現性, 近接精度, 計算効率の観点から, 最先端の深層学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-13T07:45:48Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares [43.24287146191367]
本研究では,非構造型3次元点雲の表面フィッティング法を提案する。
DeepFitと呼ばれるこの方法は、ニューラルネットワークを組み込んで、重み付けされた最小二乗表面フィッティングのポイントワイド重みを学習する。
論文 参考訳(メタデータ) (2020-03-23T09:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。