Asymmetrical Siamese Network for Point Clouds Normal Estimation
- URL: http://arxiv.org/abs/2406.09681v2
- Date: Mon, 24 Jun 2024 15:11:27 GMT
- Title: Asymmetrical Siamese Network for Point Clouds Normal Estimation
- Authors: Wei Jin, Jun Zhou, Nannan Li, Haba Madeline, Xiuping Liu,
- Abstract summary: In this paper, we explore the consistency of intrinsic features learned from clean and noisy point clouds using an Asymmetric Siamese Network architecture.
By applying reasonable constraints between features extracted from different branches, we enhance the quality of normal estimation.
We introduce a novel multi-view normal estimation dataset that includes a larger variety of shapes with different noise levels.
- Score: 13.826173253686726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning-based point cloud normal estimation has made great progress. However, existing methods mainly rely on the PCPNet dataset, leading to overfitting. In addition, the correlation between point clouds with different noise scales remains unexplored, resulting in poor performance in cross-domain scenarios. In this paper, we explore the consistency of intrinsic features learned from clean and noisy point clouds using an Asymmetric Siamese Network architecture. By applying reasonable constraints between features extracted from different branches, we enhance the quality of normal estimation. Moreover, we introduce a novel multi-view normal estimation dataset that includes a larger variety of shapes with different noise levels. Evaluation of existing methods on this new dataset reveals their inability to adapt to different types of shapes, indicating a degree of overfitting. Extensive experiments show that the proposed dataset poses significant challenges for point cloud normal estimation and that our feature constraint mechanism effectively improves upon existing methods and reduces overfitting in current architectures.
Related papers
- OCMG-Net: Neural Oriented Normal Refinement for Unstructured Point Clouds [18.234146052486054]
We present a robust refinement method for estimating oriented normals from unstructured point clouds.
Our framework incorporates sign orientation and data augmentation in the feature space to refine the initial oriented normals.
To address the issue of noise-caused direction inconsistency existing in previous approaches, we introduce a new metric called the Chamfer Normal Distance.
arXiv Detail & Related papers (2024-09-02T09:30:02Z) - CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal
Distance and Multi-scale Geometry [23.86650228464599]
This work presents an accurate and robust method for estimating normals from point clouds.
We first propose a new metric termed Chamfer Normal Distance to address this issue.
We devise an innovative architecture that encompasses Multi-scale Local Feature Aggregation and Hierarchical Geometric Information Fusion.
arXiv Detail & Related papers (2023-12-14T17:23:16Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Learning-Based Biharmonic Augmentation for Point Cloud Classification [79.13962913099378]
Biharmonic Augmentation (BA) is a novel and efficient data augmentation technique.
BA diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures.
We present AdvTune, an advanced online augmentation system that integrates adversarial training.
arXiv Detail & Related papers (2023-11-10T14:04:49Z) - Implicit neural representation for change detection [15.741202788959075]
Most commonly used approaches to detecting changes in point clouds are based on supervised methods.
We propose an unsupervised approach that comprises two components: Implicit Neural Representation (INR) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes.
We apply our method to a benchmark dataset comprising simulated LiDAR point clouds for urban sprawling.
arXiv Detail & Related papers (2023-07-28T09:26:00Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
We propose a novel differential convolution search paradigm on point clouds.
It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling.
We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error.
arXiv Detail & Related papers (2021-08-29T14:42:03Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
This paper presents a neural network for robust normal estimation on point clouds, named AdaFit, that can deal with point clouds with noise and density variations.
Existing works use a network to learn point-wise weights for weighted least surface fitting to estimate the normals.
We propose a simple yet effective solution that adds an additional offset prediction to improve the quality of normal estimation.
arXiv Detail & Related papers (2021-08-12T16:37:24Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
We propose a deep neural network that can deal with the permutation-invariance problem encountered by learning-based point cloud processing methods.
The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs.
It is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.
arXiv Detail & Related papers (2020-07-06T08:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.