論文の概要: Harm Mitigation in Recommender Systems under User Preference Dynamics
- arxiv url: http://arxiv.org/abs/2406.09882v1
- Date: Fri, 14 Jun 2024 09:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:14:45.471432
- Title: Harm Mitigation in Recommender Systems under User Preference Dynamics
- Title(参考訳): ユーザの嗜好動態を考慮したレコメンダシステムのハーム緩和
- Authors: Jerry Chee, Shankar Kalyanaraman, Sindhu Kiranmai Ernala, Udi Weinsberg, Sarah Dean, Stratis Ioannidis,
- Abstract要約: 本稿では,レコメンデーション,ユーザ関心,有害コンテンツとの相互作用を考慮したレコメンデーションシステムについて考察する。
クリックスルー率(CTR)の最大化と害軽減のトレードオフを確立するためのレコメンデーションポリシーを模索する。
- 参考スコア(独自算出の注目度): 16.213153879446796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a recommender system that takes into account the interplay between recommendations, the evolution of user interests, and harmful content. We model the impact of recommendations on user behavior, particularly the tendency to consume harmful content. We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm. We establish conditions under which the user profile dynamics have a stationary point, and propose algorithms for finding an optimal recommendation policy at stationarity. We experiment on a semi-synthetic movie recommendation setting initialized with real data and observe that our policies outperform baselines at simultaneously maximizing CTR and mitigating harm.
- Abstract(参考訳): 本稿では,レコメンデーションとユーザ関心の進化,有害コンテンツとの相互作用を考慮したレコメンデーションシステムについて考察する。
ユーザの行動,特に有害なコンテンツを消費する傾向に対するレコメンデーションの影響をモデル化する。
クリックスルー率(CTR)の最大化と害軽減のトレードオフを確立するためのレコメンデーションポリシーを模索する。
我々は,ユーザプロファイルのダイナミクスが定常点を持つ条件を確立し,定常度で最適な推薦ポリシーを見つけるためのアルゴリズムを提案する。
我々は、実データで初期化された半合成映画レコメンデーションセットを実験し、我々のポリシーがCTRを最大化し、害を緩和すると同時にベースラインを上回ることを観察した。
関連論文リスト
- Preference Diffusion for Recommendation [50.8692409346126]
DMベースのレコメンデータに適した最適化対象であるPreferDiffを提案する。
PreferDiffは、BPRをログライクなランキング目標に変換することで、ユーザの好みをよりよく把握する。
これはDMベースのレコメンデーション向けに特別に設計された、パーソナライズされたランキングの損失である。
論文 参考訳(メタデータ) (2024-10-17T01:02:04Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
本稿では,長期シナリオにおけるユーザ-リコメンダ間のインタラクションを模倣するシミュレーションフレームワークを提案する。
本稿では,ユーザの嗜好に対するアルゴリズムの影響を定量化する2つの新しい指標について紹介する。
論文 参考訳(メタデータ) (2024-09-24T21:54:22Z) - Treatment Effect Estimation for User Interest Exploration on Recommender Systems [10.05609996672672]
本稿では,トップN推薦を処理最適化問題とみなすUpliftモデルに基づくRecommenderフレームワークを提案する。
UpliftRecは、観察ユーザフィードバックを用いて、異なるカテゴリの露出比で、クリックスルーレート(CTR)という治療効果を推定する。
UpliftRecはグループレベルの治療効果を計算し、高いCTR報酬でユーザの隠れた関心を発見する。
論文 参考訳(メタデータ) (2024-05-14T13:22:33Z) - Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large
Language Model Recommendation [52.62492168507781]
LLM(FaiRLLM)を用いたFairness of Recommendationと呼ばれる新しいベンチマークを提案する。
このベンチマークは、慎重に作成されたメトリクスと、8つの機密属性を考慮に入れたデータセットで構成されている。
FaiRLLMベンチマークを用いて、ChatGPTの評価を行い、レコメンデーションを生成する際には、いくつかの機密属性に対して不公平であることがわかった。
論文 参考訳(メタデータ) (2023-05-12T16:54:36Z) - Recommending to Strategic Users [10.079698681921673]
ユーザーは、将来推奨されるコンテンツの種類に影響を与えるために、戦略的にコンテンツを選択する。
本稿では,戦略的消費を考慮した推奨品質向上のための3つの介入を提案する。
論文 参考訳(メタデータ) (2023-02-13T17:57:30Z) - Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
Engagement [12.843340232167266]
本稿では,レコメンデーションにおけるブレークの役割について検討し,最適なブレークポリシーを学習するための枠組みを提案する。
推奨力学は正と負の両方のフィードバックに影響を受けやすいという概念に基づいて,ロトカ・ボルテラの力学系としてレコメンデーションを提唱した。
論文 参考訳(メタデータ) (2022-11-24T13:14:29Z) - Recommendation with User Active Disclosing Willingness [20.306413327597603]
本研究では,ユーザが異なる行動を公開する上で,その「意志」を示すことを許される,新しい推薦パラダイムについて検討する。
我々は,推薦品質とユーザ開示意欲のバランスをとる上で,モデルの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-25T04:43:40Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
セッションベースのレコメンデーションシナリオについて検討し、シーケンシャルなインタラクションの間、ユーザに対してアイテムを推薦し、長期的なユーティリティを改善する。
我々は、セッション間のポリシーによる分散シフトを近似するショートホライズンポリシー改善(SHPI)と呼ばれる新しいバッチRLアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-01T15:58:05Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。