論文の概要: Implementing engrams from a machine learning perspective: XOR as a basic motif
- arxiv url: http://arxiv.org/abs/2406.09940v1
- Date: Fri, 14 Jun 2024 11:36:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 14:05:00.598878
- Title: Implementing engrams from a machine learning perspective: XOR as a basic motif
- Title(参考訳): 機械学習の観点からのエングラムの実装:基本モチーフとしてのXOR
- Authors: Jesus Marco de Lucas, Maria Peña Fernandez, Lara Lloret Iglesias,
- Abstract要約: 我々は,XORスイッチを実装した基本モチーフに基づいて,最初のアイデアを提示する。
我々は、このXORモチーフを組み込んだ学習能力を備えた、基本的な生物学的神経構造の構築方法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We have previously presented the idea of how complex multimodal information could be represented in our brains in a compressed form, following mechanisms similar to those employed in machine learning tools, like autoencoders. In this short comment note we reflect, mainly with a didactical purpose, upon the basic question for a biological implementation: what could be the mechanism working as a loss function, and how it could be connected to a neuronal network providing the required feedback to build a simple training configuration. We present our initial ideas based on a basic motif that implements an XOR switch, using few excitatory and inhibitory neurons. Such motif is guided by a principle of homeostasis, and it implements a loss function that could provide feedback to other neuronal structures, establishing a control system. We analyse the presence of this XOR motif in the connectome of C.Elegans, and indicate the relationship with the well-known lateral inhibition motif. We then explore how to build a basic biological neuronal structure with learning capacity integrating this XOR motif. Guided by the computational analogy, we show an initial example that indicates the feasibility of this approach, applied to learning binary sequences, like it is the case for simple melodies. In summary, we provide didactical examples exploring the parallelism between biological and computational learning mechanisms, identifying basic motifs and training procedures, and how an engram encoding a melody could be built using a simple recurrent network involving both excitatory and inhibitory neurons.
- Abstract(参考訳): 私たちは以前、オートエンコーダのような機械学習ツールで使われているのと同様のメカニズムに従って、複雑なマルチモーダル情報を圧縮形式で脳内でどのように表現できるかというアイデアを提示しました。
この短いコメントで、我々は主に実践的な目的を持って、生物学的実装の基本的な問題として、損失関数として機能するメカニズムと、単純なトレーニング構成を構築するために必要なフィードバックを提供する神経ネットワークにどのように接続できるか、について考察する。
我々は,XORスイッチを実装した基本的なモチーフに基づいて,興奮ニューロンや抑制ニューロンの少ない初期アイデアを提示する。
このようなモチーフはホメオスタシスの原理で導かれ、他の神経細胞構造へのフィードバックを提供する損失関数を実装し、制御系を確立する。
我々は、C.ElegansのコネクトームにおけるこのXORモチーフの存在を分析し、よく知られた側方抑制モチーフとの関係を示す。
次に、このXORモチーフを組み込んだ学習能力を備えた、基本的な生物学的神経構造の構築方法について検討する。
計算アナロジーによって導かれた最初の例は、単純な旋律の場合のように、バイナリシーケンスの学習に適用されたこのアプローチの実現可能性を示すものである。
まとめると, 生物学的学習機構と計算学習機構の並列性, 基本的なモチーフと訓練手順の同定, および興奮ニューロンと抑制ニューロンの両方を含む単純なリカレントネットワークを用いてメロディをコードするエングラムの構築方法について検討した。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Neuromechanical Autoencoders: Learning to Couple Elastic and Neural
Network Nonlinearity [15.47367187516723]
私たちは機械学習のアナログを開発しようとしています。
メカニカルインテリジェンス
複素非線形弾性体のモルフォロジーとaを共に学習する。
ディープ・ニューラル・ネットワークで制御できます
論文 参考訳(メタデータ) (2023-01-31T19:04:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Spike-based local synaptic plasticity: A survey of computational models
and neuromorphic circuits [1.8464222520424338]
シナプス可塑性のモデル化における歴史的,ボトムアップ的,トップダウン的なアプローチを概観する。
スパイクベース学習ルールの低レイテンシおよび低消費電力ハードウェア実装をサポートする計算プリミティブを同定する。
論文 参考訳(メタデータ) (2022-09-30T15:35:04Z) - Neuromorphic Control [1.52292571922932]
本稿では、異なる時間スケールで作用する正負のフィードバックループと正のフィードバックループからなる興奮性神経系の混合フィードバック組織について紹介する。
提案した設計は、生物学的ニューロンの組織を反映する基本回路要素の並列接続で構成されている。
神経制御のポテンシャルは、混合フィードバック原理のスケーラビリティを示唆する基本的なネットワークの例に示される。
論文 参考訳(メタデータ) (2020-11-09T14:06:06Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。