論文の概要: Outlier detection in maritime environments using AIS data and deep recurrent architectures
- arxiv url: http://arxiv.org/abs/2406.09966v1
- Date: Fri, 14 Jun 2024 12:15:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:55:15.653926
- Title: Outlier detection in maritime environments using AIS data and deep recurrent architectures
- Title(参考訳): AISデータとディープ・リカレント・アーキテクチャを用いた海洋環境の異常検知
- Authors: Constantine Maganaris, Eftychios Protopapadakis, Nikolaos Doulamis,
- Abstract要約: 本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
- 参考スコア(独自算出の注目度): 5.399126243770847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data, is presented in this paper. The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns. Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns of maritime vessels. Specifically, a deep-learning framework, i.e. an encoder-decoder architecture, is trained using the observed motion patterns, enabling the models to learn and predict the expected trajectory, which will be compared to the effective ones. Our models, particularly the bidirectional GRU with recurrent dropouts, showcased superior performance in capturing the temporal dynamics of maritime data, illustrating the potential of deep learning to enhance maritime surveillance capabilities. Our work lays a solid foundation for future research in this domain, highlighting a path toward improved maritime safety through the innovative application of technology.
- Abstract(参考訳): 本稿では,海上監視のための深部再帰モデルに基づく自動識別システム(AIS)データを用いた手法について述べる。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
本手法は, 海上船舶の観測および再構成動作パターン間の誤差を計算し, しきい値決定機構に基づく。
具体的には、エンコーダ・デコーダアーキテクチャ(encoder-decoder architecture)と呼ばれるディープラーニングフレームワークを、観測された動作パターンを用いてトレーニングし、モデルが期待される軌道を学習し、予測し、効果的に比較できるようにする。
我々のモデル、特に繰り返し降下する双方向GRUは、海洋データの時間的ダイナミクスを捉える上で優れた性能を示し、深層学習による海洋監視能力の向上の可能性を示した。
我々の研究は、この領域における将来の研究の確固たる基盤を築き、革新的な技術の応用を通じて海洋安全を改善するための道のりを強調しています。
関連論文リスト
- Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
海上輸送産業はコンピュータビジョン人工知能(AI)の進歩によって急速に進化している
海洋環境における物体認識は、光の反射、干渉、激しい照明、様々な気象条件といった課題に直面します。
既存のAI認識モデルとデータセットは、自律ナビゲーションシステムを構成するのに限定的に適している。
論文 参考訳(メタデータ) (2024-07-12T05:48:53Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
本研究は, 船橋に設置した静止カメラ1台が捉えた運用用封筒内の海像の活用に焦点を当てた。
収集した画像は、深層学習モデルを訓練し、ビューフォートスケールに基づいて海の状態を自動的に認識する。
論文 参考訳(メタデータ) (2024-07-04T09:07:25Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
低データ環境下での高忠実度ディープビジョンに基づく沿岸洪水予測モデルを訓練するための体系的枠組みを提案する。
また,沿岸の洪水予測問題に特化して,CNNの深部構造を導入している。
開発したDLモデルの性能は、一般に採用されている測地回帰法に対して検証される。
論文 参考訳(メタデータ) (2024-06-06T19:54:34Z) - A CNN-LSTM Architecture for Marine Vessel Track Association Using
Automatic Identification System (AIS) Data [2.094022863940315]
本研究では,トラックアソシエーションのための1次元CNN-LSTMアーキテクチャに基づくフレームワークを提案する。
提案した枠組みは、自動識別システム(AIS)を介して収集された船舶の位置と動きデータを入力とし、最も可能性の高い船舶軌道をリアルタイムで出力として返す。
論文 参考訳(メタデータ) (2023-03-24T15:26:49Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Deep Learning Methods for Vessel Trajectory Prediction based on
Recurrent Neural Networks [13.193080011901381]
エンコーダデコーダリカレントニューラルネットワーク(RNN)に基づくシーケンシャル・トゥ・シークエンス容器軌道予測モデルを提案する。
提案アーキテクチャは,シーケンスモデリングのためのLong Short-Term Memory (LSTM) RNNを組み合わせて観測データをエンコードし,異なる中間アグリゲーション層で将来の予測を生成し,シーケンシャルデータの時空間依存性をキャプチャする。
デンマーク海事局が自由に利用できるAISデータセットからの船舶軌道に関する実験結果は、シーケンシャル・トゥ・シークエンスニューラルネットワークに基づく軌道予測のための深層学習方法の有効性を示しています。
論文 参考訳(メタデータ) (2021-01-07T11:05:47Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。