ProtoS-ViT: Visual foundation models for sparse self-explainable classifications
- URL: http://arxiv.org/abs/2406.10025v2
- Date: Sat, 14 Dec 2024 03:38:30 GMT
- Title: ProtoS-ViT: Visual foundation models for sparse self-explainable classifications
- Authors: Hugues Turbé, Mina Bjelogrlic, Gianmarco Mengaldo, Christian Lovis,
- Abstract summary: Prototypical networks aim to build intrinsically explainable models based on the linear summation of concepts.
This work first proposes an extensive set of quantitative and qualitative metrics which allow to identify drawbacks in current prototypical networks.
It then introduces a novel architecture which provides compact explanations, outperforming current prototypical models in terms of explanation quality.
- Score: 0.6249768559720122
- License:
- Abstract: Prototypical networks aim to build intrinsically explainable models based on the linear summation of concepts. Concepts are coherent entities that we, as humans, can recognize and associate with a certain object or entity. However, important challenges remain in the fair evaluation of explanation quality provided by these models. This work first proposes an extensive set of quantitative and qualitative metrics which allow to identify drawbacks in current prototypical networks. It then introduces a novel architecture which provides compact explanations, outperforming current prototypical models in terms of explanation quality. Overall, the proposed architecture demonstrates how frozen pre-trained ViT backbones can be effectively turned into prototypical models for both general and domain-specific tasks, in our case biomedical image classifiers. Code is available at \url{https://github.com/hturbe/protosvit}.
Related papers
- Jet: A Modern Transformer-Based Normalizing Flow [62.2573739835562]
We revisit the design of the coupling-based normalizing flow models by carefully ablating prior design choices.
We achieve state-of-the-art quantitative and qualitative performance with a much simpler architecture.
arXiv Detail & Related papers (2024-12-19T18:09:42Z) - Few-Shot Medical Image Segmentation with High-Fidelity Prototypes [38.073371773707514]
We propose a novel Detail Self-refined Prototype Network (DSPNet) to construct high-fidelity prototypes representing the object foreground and the background more comprehensively.
To construct global semantics while maintaining the captured detail semantics, we learn the foreground prototypes by modelling the multi-modal structures with clustering and then fusing each in a channel-wise manner.
arXiv Detail & Related papers (2024-06-26T05:06:14Z) - Towards Compositional Interpretability for XAI [3.3768167170511587]
We present an approach to defining AI models and their interpretability based on category theory.
We compare a wide range of AI models as compositional models.
We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically.
arXiv Detail & Related papers (2024-06-25T14:27:03Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Counterfactual Edits for Generative Evaluation [0.0]
We propose a framework for the evaluation and explanation of synthesized results based on concepts instead of pixels.
Our framework exploits knowledge-based counterfactual edits that underline which objects or attributes should be inserted, removed, or replaced from generated images.
Global explanations produced by accumulating local edits can also reveal what concepts a model cannot generate in total.
arXiv Detail & Related papers (2023-03-02T20:10:18Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
arXiv Detail & Related papers (2022-08-02T14:33:14Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
We cast the study of deep neural networks under a unifying framework.
Our framework provides insights on the inductive biases of each model.
The efficacy of the proposed models is evaluated on standard image and audio classification benchmarks.
arXiv Detail & Related papers (2021-04-16T06:41:20Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Generative Neurosymbolic Machines [26.364503276512153]
Reconciling symbolic and distributed representations is a crucial challenge that can potentially resolve the limitations of current deep learning.
We propose Generative Neurosymbolic Machines, a generative model that combines the benefits of distributed and symbolic representations to support both structured representations of symbolic components and density-based generation.
arXiv Detail & Related papers (2020-10-23T04:02:13Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.