GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems
- URL: http://arxiv.org/abs/2406.10244v1
- Date: Thu, 6 Jun 2024 13:55:55 GMT
- Title: GLINT-RU: Gated Lightweight Intelligent Recurrent Units for Sequential Recommender Systems
- Authors: Sheng Zhang, Maolin Wang, Xiangyu Zhao,
- Abstract summary: This paper proposes a novel efficient sequential recommendation framework GLINT-RU.
It uses dense selective Gated Recurrent Units (GRU) module to accelerate the inference speed.
Our framework achieves exceptional inference speed and prediction accuracy, outperforming existing baselines.
- Score: 24.758106816702767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of artificial intelligence, transformer-based models have gained significant attention in the context of Sequential Recommender Systems (SRSs), demonstrating remarkable proficiency in capturing user-item interactions. However, such attention-based frameworks result in substantial computational overhead and extended inference time. To address this problem, this paper proposes a novel efficient sequential recommendation framework GLINT-RU that leverages dense selective Gated Recurrent Units (GRU) module to accelerate the inference speed, which is a pioneering work to further exploit the potential of efficient GRU modules in SRSs. The GRU module lies at the heart of GLINT-RU, playing a crucial role in substantially reducing both inference time and GPU memory usage. Through the integration of a dense selective gate, our framework adeptly captures both long-term and short-term item dependencies, enabling the adaptive generation of item scores. GLINT-RU further integrates a mixing block, enriching it with global user-item interaction information to bolster recommendation quality. Moreover, we design a gated Multi-layer Perceptron (MLP) for our framework where the information is deeply filtered. Extensive experiments on three datasets are conducted to highlight the effectiveness and efficiency of GLINT-RU. Our GLINT-RU achieves exceptional inference speed and prediction accuracy, outperforming existing baselines based on Recurrent Neural Network (RNN), Transformer, MLP and State Space Model (SSM). These results establish a new standard in sequential recommendation, highlighting the potential of GLINT-RU as a renewing approach in the realm of recommender systems.
Related papers
- RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency.
Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs.
We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization.
arXiv Detail & Related papers (2025-02-16T04:56:53Z) - Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data [1.6135226672466307]
Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications.
This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation.
arXiv Detail & Related papers (2025-01-17T13:48:04Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.
With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)
Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.
High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Pre-train, Align, and Disentangle: Empowering Sequential Recommendation with Large Language Models [26.331324261505486]
Sequential Recommendation (SR) aims to leverage the sequential patterns in users' historical interactions to accurately track their preferences.
Despite the proven effectiveness of large language models (LLMs), their integration into commercial recommender systems is impeded.
We introduce a novel Pre-train, Align, and Disentangle (PAD) framework to enhance SR models with LLMs.
arXiv Detail & Related papers (2024-12-05T12:17:56Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts [15.920623515602038]
Large Language Models (LLMs) are highly susceptible to the influence of prompt words.
This paper proposes GANPrompt, a multi-dimensional LLMs prompt diversity framework based on Generative Adversarial Networks (GANs)
The framework enhances the model's adaptability and stability to diverse prompts by integrating GANs generation techniques with the deep semantic understanding capabilities of LLMs.
arXiv Detail & Related papers (2024-08-19T03:13:20Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender systems (RSs) depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables.
Despite the prosperity of lightweight embedding-based RSs, a wide diversity is seen in evaluation protocols.
This study investigates various LERS' performance, efficiency, and cross-task transferability via a thorough benchmarking process.
arXiv Detail & Related papers (2024-06-25T07:45:00Z) - Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate [16.4160685571157]
Recurrent Neural Networks (RNNs) are widely recognized for their proficiency in modeling temporal dependencies.
This paper proposes a novel Delayed Memory Unit (DMU) for gated RNNs.
The DMU incorporates a delay line structure along with delay gates into vanilla RNN, thereby enhancing temporal interaction and facilitating temporal credit assignment.
arXiv Detail & Related papers (2023-10-23T14:29:48Z) - Faster Learning of Temporal Action Proposal via Sparse Multilevel
Boundary Generator [9.038216757761955]
Temporal action localization in videos presents significant challenges in the field of computer vision.
We propose a novel framework, Sparse Multilevel Boundary Generator (SMBG), which enhances the boundary-sensitive method with boundary classification and action completeness regression.
Our method is evaluated on two popular benchmarks, ActivityNet-1.3 and THUMOS14, and is shown to achieve state-of-the-art performance, with a better inference speed (2.47xBSN++, 2.12xDBG)
arXiv Detail & Related papers (2023-03-06T14:26:56Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism.
We show that $tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures.
arXiv Detail & Related papers (2022-12-01T02:26:34Z) - IMDeception: Grouped Information Distilling Super-Resolution Network [7.6146285961466]
Single-Image-Super-Resolution (SISR) is a classical computer vision problem that has benefited from the recent advancements in deep learning methods.
In this work, we propose the Global Progressive Refinement Module (GPRM) as a less parameter-demanding alternative to the IIC module for feature aggregation.
We also propose Grouped Information Distilling Blocks (GIDB) to further decrease the number of parameters and floating point operations persecond (FLOPS)
Experiments reveal that the proposed network performs on par with state-of-the-art models despite having a limited number of parameters and FLOPS
arXiv Detail & Related papers (2022-04-25T06:43:45Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Lightweight Self-Attentive Sequential Recommendation [30.048184102259494]
We introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation.
To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings.
To account for the intrinsic dynamics of each item, we propose a temporal context-aware embedding composition scheme.
arXiv Detail & Related papers (2021-08-25T16:46:47Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Refined Gate: A Simple and Effective Gating Mechanism for Recurrent
Units [68.30422112784355]
We propose a new gating mechanism within general gated recurrent neural networks to handle this issue.
The proposed gates directly short connect the extracted input features to the outputs of vanilla gates.
We verify the proposed gating mechanism on three popular types of gated RNNs including LSTM, GRU and MGU.
arXiv Detail & Related papers (2020-02-26T07:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.