論文の概要: DCDILP: a distributed learning method for large-scale causal structure learning
- arxiv url: http://arxiv.org/abs/2406.10481v1
- Date: Sat, 15 Jun 2024 03:17:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 00:12:44.324363
- Title: DCDILP: a distributed learning method for large-scale causal structure learning
- Title(参考訳): 大規模因果構造学習のための分散学習法DCDILP
- Authors: Shuyu Dong, Michèle Sebag, Kento Uemura, Akito Fujii, Shuang Chang, Yusuke Koyanagi, Koji Maruhashi,
- Abstract要約: 本稿では,分断・対数的枠組みによる因果発見への新たなアプローチを提案する。
マルコフ毛布上に定義されたより小さなサブプロブレムに分解することで、提案したDCDILP法は、これらのサブプロブレムの局所因果グラフを並列に探索する。
- 参考スコア(独自算出の注目度): 4.551283926017506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to causal discovery through a divide-and-conquer framework. By decomposing the problem into smaller subproblems defined on Markov blankets, the proposed DCDILP method first explores in parallel the local causal graphs of these subproblems. However, this local discovery phase encounters systematic challenges due to the presence of hidden confounders (variables within each Markov blanket may be influenced by external variables). Moreover, aggregating these local causal graphs in a consistent global graph defines a large size combinatorial optimization problem. DCDILP addresses these challenges by: i) restricting the local subgraphs to causal links only related with the central variable of the Markov blanket; ii) formulating the reconciliation of local causal graphs as an integer linear programming method. The merits of the approach, in both terms of causal discovery accuracy and scalability in the size of the problem, are showcased by experiments and comparisons with the state of the art.
- Abstract(参考訳): 本稿では,分断・対数的枠組みによる因果発見への新たなアプローチを提案する。
マルコフ毛布上に定義されたより小さなサブプロブレムに分解することで、提案したDCDILP法は、これらのサブプロブレムの局所因果グラフを並列に探索する。
しかし、この局所的な発見フェーズは、隠れた共同創設者の存在(マルコフの毛布内の変数は外部変数に影響される可能性がある)によって体系的な課題に遭遇する。
さらに、これらの局所因果グラフを一貫したグローバルグラフに集約することで、大規模な組合せ最適化問題を定義する。
DCDILPは以下の課題に対処する。
一 マルコフ毛布の中央変数にのみ関連する因果関係に限る。
二 整数線形計画法として局所因果グラフの整合を定式化すること。
この手法の利点は、因果発見精度と問題の大きさのスケーラビリティの両方の観点から、実験と最先端技術との比較によって示される。
関連論文リスト
- Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
本稿では,分散勾配勾配(D-SGDA)アルゴリズムの一般化境界の複雑さについて検討する。
本研究は,D-SGDAの一般化における各因子の影響を解析した。
また、最適凸凹設定を得るために一般化とバランスをとる。
論文 参考訳(メタデータ) (2023-10-31T11:27:01Z) - Joint Learning of Label and Environment Causal Independence for Graph
Out-of-Distribution Generalization [60.4169201192582]
本稿では,ラベルと環境情報を完全に活用するために,ラベルと環境の因果独立(LECI)を導入することを提案する。
LECIは、合成データセットと実世界のデータセットの両方において、従来の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2023-06-01T19:33:30Z) - Self-Supervised Learning with an Information Maximization Criterion [5.214806886230471]
同じ入力の代替表現間の情報の直接的な適用は、崩壊問題を自然に解決する、と我々は主張する。
本稿では,2次統計に基づく相互情報尺度を用いた自己教師型学習手法CorInfoMaxを提案する。
CorInfoMaxは、最先端のSSLアプローチと比較して、より良い、あるいは競争力のあるパフォーマンスを達成している。
論文 参考訳(メタデータ) (2022-09-16T15:26:19Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - A Probabilistic Graph Coupling View of Dimension Reduction [5.35952718937799]
クロスエントロピーを用いた隠れグラフの結合に基づく統一統計フレームワークを提案する。
既存のペアワイズ類似性DR法は,グラフの事前選択に際し,我々のフレームワークから検索可能であることを示す。
我々のモデルはこの問題に対処するために活用され拡張され、新しいリンクはラプラシア固有写像とPCAで描画される。
論文 参考訳(メタデータ) (2022-01-31T08:21:55Z) - On the Difficulty of Generalizing Reinforcement Learning Framework for
Combinatorial Optimization [6.935838847004389]
現実の応用とグラフ上の組合せ最適化問題(COP)は、コンピュータサイエンスにおける標準的な課題である。
このアプローチの基本原理は、ノードのローカル情報とグラフ構造化データの両方を符号化するグラフニューラルネットワーク(GNN)をデプロイすることである。
我々は,クラウド上のセキュリティ対応電話機のクローン割り当てを古典的二次代入問題 (QAP) として,深層RLモデルが他の難題の解法に一般的に適用可能であるか否かを調査する。
論文 参考訳(メタデータ) (2021-08-08T19:12:04Z) - A Local Method for Identifying Causal Relations under Markov Equivalence [7.904790547594697]
因果関係は、人工知能研究における解釈可能で堅牢な手法を設計する上で重要である。
有向非周期グラフ(DAG)の因果的グラフィカルモデルに基づく変数が与えられたターゲットの原因であるか否かを局所的に特定する手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T05:01:44Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z) - Stochastic gradient algorithms from ODE splitting perspective [0.0]
我々は、ODEの近似解の分割スキームに遡る最適化に関する異なる見解を示す。
そこで本研究では, ODE の勾配一階分割方式と降下アプローチの関連性について述べる。
我々は、機械学習アプリケーションにインスパイアされた分割の特殊なケースを考察し、それに対するグローバルスプリッティングエラーに新たな上限を導出する。
論文 参考訳(メタデータ) (2020-04-19T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。