On-chip microwave coherent source with in-situ control of the photon number distribution
- URL: http://arxiv.org/abs/2406.10597v2
- Date: Fri, 28 Jun 2024 00:22:18 GMT
- Title: On-chip microwave coherent source with in-situ control of the photon number distribution
- Authors: Pasquale Mastrovito, Halima Giovanna Ahmad, Martina Esposito, Davide Massarotti, Francesco Tafuri,
- Abstract summary: We propose and theoretically investigate a new design that allows a tunable photon injection directly on-chip.
The key novelty of the proposed layout consists in replacing the usual capacitive link between the source and the target cavity with a tunable coupler.
We validate the dynamical control of the generated coherent states under the effect of an external flux threading the tunable coupler.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coherent photon sources are key elements in different applications, ranging from quantum sensing to quantum computing. In the context of circuit quantum electrodynamics, there have been multiple proposals for potential coherent sources of photons, but a well established candidate is still missing. The possibility of designing and engineering superconducting circuits behaving like artificial atoms supports the realization of quantum optics protocols, including microwave photons generation. Here we propose and theoretically investigate a new design that allows a tunable photon injection directly on-chip. The scheme is based on initiating a population inversion in a superconducting circuit that will act as the photon source of one or multiple target resonators. The key novelty of the proposed layout consists in replacing the usual capacitive link between the source and the target cavity with a tunable coupler, with the advantage of having on-demand control on the injected steady-state photons. We validate the dynamical control of the generated coherent states under the effect of an external flux threading the tunable coupler and discuss the possibility of employing this scheme also in the context of multiple bosonic reservoirs.
Related papers
- Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - On-demand source of dual-rail photon pairs based on chiral interaction
in a nanophotonic waveguide [2.3776015607838747]
Entanglement is the fuel of advanced quantum technology.
In photonics, entanglement has traditionally been generated probabilistically.
We propose and experimentally realize an on-demand source of dual-rail photon pairs.
arXiv Detail & Related papers (2021-09-08T09:39:55Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.