論文の概要: City-LEO: Toward Transparent City Management Using LLM with End-to-End Optimization
- arxiv url: http://arxiv.org/abs/2406.10958v1
- Date: Sun, 16 Jun 2024 14:25:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:52:39.143073
- Title: City-LEO: Toward Transparent City Management Using LLM with End-to-End Optimization
- Title(参考訳): City-LEO: エンド・ツー・エンド最適化 LLM を用いた透明都市管理に向けて
- Authors: Zihao Jiao, Mengyi Sha, Haoyu Zhang, Xinyu Jiang,
- Abstract要約: 本稿では,都市管理の効率化と透明性を高めるため,大規模言語モデル(LLM)に基づくエージェント(City-LEO)を提案する。
ヒューマンライクな意思決定プロセスでは、City-LEOは予測と最適化を相乗化するためにエンド・ツー・エンド(E2E)モデルも組み込んでいる。
計算結果から,City-LEOは実規模最適化問題に対するベンチマークにおいて優れた性能を示す。
- 参考スコア(独自算出の注目度): 10.975986937538776
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Existing operations research (OR) models and tools play indispensable roles in smart-city operations, yet their practical implementation is limited by the complexity of modeling and deficiencies in optimization proficiency. To generate more relevant and accurate solutions to users' requirements, we propose a large language model (LLM)-based agent ("City-LEO") that enhances the efficiency and transparency of city management through conversational interactions. Specifically, to accommodate diverse users' requirements and enhance computational tractability, City-LEO leverages LLM's logical reasoning capabilities on prior knowledge to scope down large-scale optimization problems efficiently. In the human-like decision process, City-LEO also incorporates End-to-end (E2E) model to synergize the prediction and optimization. The E2E framework be conducive to coping with environmental uncertainties and involving more query-relevant features, and then facilitates transparent and interpretable decision-making process. In case study, we employ City-LEO in the operations management of e-bike sharing (EBS) system. The numerical results demonstrate that City-LEO has superior performance when benchmarks against the full-scale optimization problem. With less computational time, City-LEO generates more satisfactory and relevant solutions to the users' requirements, and achieves lower global suboptimality without significantly compromising accuracy. In a broader sense, our proposed agent offers promise to develop LLM-embedded OR tools for smart-city operations management.
- Abstract(参考訳): 既存のオペレーション研究(OR)モデルとツールは、スマートシティオペレーションにおいて欠かせない役割を担っているが、その実践は、モデリングの複雑さと最適化能力の欠陥によって制限されている。
ユーザの要求に対するより関連性が高く正確なソリューションを生成するために,対話型対話による都市管理の効率化と透明性を高める大規模言語モデル(LLM)ベースのエージェント("City-LEO")を提案する。
具体的には、多様なユーザの要求を満たし、計算的トラクタビリティを向上させるために、City-LEOはLLMの論理的推論能力を活用し、大規模最適化問題を効率的に解決する。
ヒューマンライクな意思決定プロセスでは、City-LEOは予測と最適化を相乗化するためにエンド・ツー・エンド(E2E)モデルも組み込んでいる。
E2Eフレームワークは、環境の不確実性に対処し、よりクエリに関連する特徴に対処し、透過的で解釈可能な意思決定プロセスを促進する。
事例スタディでは,e-bike Share (EBS) システムの運用管理にCity-LEOを採用している。
計算結果から,City-LEOは実規模最適化問題に対するベンチマークにおいて優れた性能を示す。
計算時間が少なくなると、City-LEOはユーザの要求に対する満足度が高く、関連するソリューションを生成し、精度を著しく損なうことなく、世界全体の準最適度を低くする。
より広義に,我々の提案するエージェントは,スマートシティ運用管理のためのLDM組み込みORツールを開発することを約束する。
関連論文リスト
- Solving General Natural-Language-Description Optimization Problems with Large Language Models [34.50671063271608]
外部ソルバでLLMを増強するOPtLLMという新しいフレームワークを提案する。
OptLLMは自然言語でユーザクエリを受け付け、それらを数学的定式化やプログラミングコードに変換し、解決者を呼び出して結果を計算する。
OptLLMフレームワークのいくつかの機能は、2023年6月から試用されている。
論文 参考訳(メタデータ) (2024-07-09T07:11:10Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
大規模言語モデル(LLM)は、幅広いプログラミングタスクを解く上で強力な能力を示している。
本稿では,パフォーマンス向上に着目したコード最適化について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - AvaTaR: Optimizing LLM Agents for Tool-Assisted Knowledge Retrieval [93.96463520716759]
大言語モデル(LLM)エージェントは、外部のツールや知識を活用して精度を高め、幻覚を減らすという印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供するツールを効果的に利用し、与えられたタスク/ドメインの性能を向上させる新しいフレームワークであるAvaTaRを紹介する。
AvaTaRは、4つの課題にまたがる最先端のアプローチを一貫して上回り、新規事例に適用した場合に強力な一般化能力を示す。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - ORLM: Training Large Language Models for Optimization Modeling [16.348267803499404]
大規模言語モデル(LLM)は複雑なオペレーションリサーチ(OR)問題に対処するための強力なツールとして登場した。
この問題に対処するために、最適化モデリングのためのオープンソースのLLMのトレーニングを提案する。
我々は,NL4OPT,MAMO,IndustrialORベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - AI-Copilot for Business Optimisation: A Framework and A Case Study in
Production Scheduling [3.522755287096529]
ビジネス最適化問題定式化のためのAI-Copilotを提案する。
トークンの制限については、モジュール化を導入し、エンジニアリング技術を推進します。
問題定式化の精度と品質を評価するのに適した性能評価指標を設計する。
論文 参考訳(メタデータ) (2023-09-22T23:45:21Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。