論文の概要: Scorecards for Synthetic Medical Data Evaluation and Reporting
- arxiv url: http://arxiv.org/abs/2406.11143v2
- Date: Wed, 04 Dec 2024 00:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:02.469957
- Title: Scorecards for Synthetic Medical Data Evaluation and Reporting
- Title(参考訳): 総合医療データ評価・報告のためのスコアカード
- Authors: Ghada Zamzmi, Adarsh Subbaswamy, Elena Sizikova, Edward Margerrison, Jana Delfino, Aldo Badano,
- Abstract要約: 医療応用のユニークな要件を満たすために設計された評価フレームワークについて概説する。
このカードは、合成データの品質を評価し、報告するための透過的で標準化されたフレームワークを提供する。
- 参考スコア(独自算出の注目度): 2.8262986891348056
- License:
- Abstract: Although interest in synthetic medical data (SMD) for training and testing AI methods is growing, the absence of a standardized framework to evaluate its quality and applicability hinders its wider adoption. Here, we outline an evaluation framework designed to meet the unique requirements of medical applications, and introduce SMD Card, which can serve as comprehensive reports that accompany artificially generated datasets. This card provides a transparent and standardized framework for evaluating and reporting the quality of synthetic data, which can benefit SMD developers, users, and regulators, particularly for AI models using SMD in regulatory submissions.
- Abstract(参考訳): AI手法のトレーニングとテストのための合成医療データ(SMD)への関心は高まっているが、その品質と適用性を評価するための標準化されたフレームワークが欠如しているため、その普及は妨げられている。
本稿では,医療応用のユニークな要件を満たすために設計された評価フレームワークの概要と,人工的に生成されたデータセットに付随する総合的なレポートとして機能するSMD Cardを紹介する。
このカードは、合成データの品質を評価し、報告するための透過的で標準化されたフレームワークを提供する。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-27T14:00:11Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
大規模言語モデル(LLM)は、言語理解と生成の高度な能力で様々な産業に影響を与えている。
この包括的調査は、医療におけるLSMの広範な適用と必要な評価を概説する。
本調査は,臨床環境,医療用テキストデータ処理,研究,教育,公衆衛生への意識といった分野におけるLCM応用の詳細な分析を行うために構成されている。
論文 参考訳(メタデータ) (2024-04-24T09:55:24Z) - The METRIC-framework for assessing data quality for trustworthy AI in
medicine: a systematic review [0.0]
信頼できるAIの開発は特に医学において重要である。
ディープラーニング(DL)におけるデータ品質(トレーニング/テスト)の重要性に焦点を当てる。
本稿では,医療訓練データのための特化データ品質フレームワークであるMETRICフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-21T09:15:46Z) - Can I trust my fake data -- A comprehensive quality assessment framework
for synthetic tabular data in healthcare [33.855237079128955]
プライバシー上の懸念と規制上の要求に応えて、合成データの使用が提案されている。
医療におけるAI応用のためのSDの品質保証のための概念的枠組みを提案する。
現実のアプリケーションをサポートするために必要なステージを提案する。
論文 参考訳(メタデータ) (2024-01-24T08:14:20Z) - A Multifaceted Benchmarking of Synthetic Electronic Health Record
Generation Models [15.165156674288623]
人工健康データの重要な特徴を評価するために,一般化可能なベンチマークフレームワークを導入する。
その結果, 合成EHRデータの共有にはユーティリティ・プライバシ・トレードオフが存在することがわかった。
論文 参考訳(メタデータ) (2022-08-02T03:44:45Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。