論文の概要: Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG
- arxiv url: http://arxiv.org/abs/2406.11147v3
- Date: Tue, 17 Jun 2025 15:07:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.029856
- Title: Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG
- Title(参考訳): Vul-RAG:知識レベルRAGによるLCMに基づく脆弱性検出の強化
- Authors: Xueying Du, Geng Zheng, Kaixin Wang, Yi Zou, Yujia Wang, Wentai Deng, Jiayi Feng, Mingwei Liu, Bihuan Chen, Xin Peng, Tao Ma, Yiling Lou,
- Abstract要約: Vul-RAGによって生成された脆弱性知識は、手動検出精度を向上させるための高品質な説明として機能する。
Vul-RAGはまた、最近のLinuxカーネルリリースで既知の10のバグを6つのアサインされたCVEで検出できる。
- 参考スコア(独自算出の注目度): 19.38891892396794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although LLMs have shown promising potential in vulnerability detection, this study reveals their limitations in distinguishing between vulnerable and similar-but-benign patched code (only 0.06 - 0.14 accuracy). It shows that LLMs struggle to capture the root causes of vulnerabilities during vulnerability detection. To address this challenge, we propose enhancing LLMs with multi-dimensional vulnerability knowledge distilled from historical vulnerabilities and fixes. We design a novel knowledge-level Retrieval-Augmented Generation framework Vul-RAG, which improves LLMs with an accuracy increase of 16% - 24% in identifying vulnerable and patched code. Additionally, vulnerability knowledge generated by Vul-RAG can further (1) serve as high-quality explanations to improve manual detection accuracy (from 60% to 77%), and (2) detect 10 previously-unknown bugs in the recent Linux kernel release with 6 assigned CVEs.
- Abstract(参考訳): LLMは、脆弱性検出の有望な可能性を示しているが、この研究は、脆弱性と類似の修正コード(0.06 - 0.14精度のみ)を区別する際の制限を明らかにしている。
LLMは脆弱性検出時に脆弱性の根本原因を捉えるのに苦労している。
この課題に対処するために、歴史的脆弱性や修正から抽出した多次元脆弱性知識を用いたLLMの強化を提案する。
Vul-RAGはLLMを16%から24%の精度で改善し、脆弱性のあるコードとパッチ付きコードを識別する。
さらに、Vul-RAGが生成した脆弱性知識は、(1)手動検出精度(60%から77%)を改善するための高品質な説明として機能し、(2)6つのCVEを割り当てた最近のLinuxカーネルリリースにおいて、既知の10のバグを検出することができる。
関連論文リスト
- LLMxCPG: Context-Aware Vulnerability Detection Through Code Property Graph-Guided Large Language Models [2.891351178680099]
本稿では,コードプロパティグラフ(CPG)とLarge Language Models(LLM)を統合し,堅牢な脆弱性検出を行う新しいフレームワークを提案する。
より簡潔で正確なコードスニペット表現を提供するアプローチの能力は、より大きなコードセグメントの分析を可能にします。
実証的な評価は、検証済みデータセット間でLLMxCPGの有効性を示し、最先端のベースラインよりもF1スコアが15~40%改善されている。
論文 参考訳(メタデータ) (2025-07-22T13:36:33Z) - Defending against Indirect Prompt Injection by Instruction Detection [81.98614607987793]
本稿では, 外部データを入力として取り込んで, 前方および後方の伝搬中におけるLCMの動作状態を利用して, 潜在的なIPI攻撃を検出する手法を提案する。
提案手法は,ドメイン内設定で99.60%,ドメイン外設定で96.90%,攻撃成功率でBIPIAベンチマークで0.12%に低下する。
論文 参考訳(メタデータ) (2025-05-08T13:04:45Z) - Benchmarking LLMs and LLM-based Agents in Practical Vulnerability Detection for Code Repositories [8.583591493627276]
JitVulは、各関数をその脆弱性導入とコミットの修正にリンクする脆弱性検出ベンチマークである。
思考・行動・観察と相互言語的文脈を活用するReAct Agentsは,良性のあるコードと区別する上で,LLMよりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2025-03-05T15:22:24Z) - Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Ownership Verification with Reasoning [58.57194301645823]
大規模言語モデル (LLM) は、検索強化生成機構 (RAG) を通じて現実のアプリケーションに統合されつつある。
これらの知識基盤を保護するための透かし技術として一般化できる既存の方法は、通常、中毒攻撃を伴う。
我々は、無害な」知識基盤の著作権保護の名称を提案する。
論文 参考訳(メタデータ) (2025-02-10T09:15:56Z) - CommitShield: Tracking Vulnerability Introduction and Fix in Version Control Systems [15.037460085046806]
CommitShieldは、コードコミットの脆弱性を検出するツールである。
静的解析ツールのコード解析機能と、大きな言語モデルの自然言語とコード理解機能を組み合わせる。
脆弱性修正検出タスクの最先端メソッドに対して,CommitShieldはリコールを76%~87%改善することを示す。
論文 参考訳(メタデータ) (2025-01-07T08:52:55Z) - LProtector: An LLM-driven Vulnerability Detection System [3.175156999656286]
LProtectorは、大規模言語モデル(LLM) GPT-4oとRetrieval-Augmented Generation(RAG)によって駆動されるC/C++の自動脆弱性検出システムである。
論文 参考訳(メタデータ) (2024-11-10T15:21:30Z) - ADVLLM: Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models [17.96542494363619]
大規模言語モデル(LLM)は、複雑なコンテキストを解釈する際、顕著な能力を示した。
本稿では,脆弱性の検出と説明の両面において,LSMの能力について検討する。
脆弱性説明のための特別な微調整の下で、LLMVulExpはコードの脆弱性の種類を検出するだけでなく、コードコンテキストを分析して原因、場所、修正提案を生成する。
論文 参考訳(メタデータ) (2024-06-14T04:01:25Z) - VulDetectBench: Evaluating the Deep Capability of Vulnerability Detection with Large Language Models [12.465060623389151]
本研究では,Large Language Models(LLM)の脆弱性検出機能を評価するために,新しいベンチマークであるVulDetectBenchを紹介する。
このベンチマークは、LLMの脆弱性を特定し、分類し、発見する能力を、難易度を高める5つのタスクを通じて総合的に評価している。
本ベンチマークでは,脆弱性検出の特定のタスクにおいて,様々なLLMの能力評価を効果的に行うとともに,コードセキュリティの重要領域における今後の研究と改善の基盤となる。
論文 参考訳(メタデータ) (2024-06-11T13:42:57Z) - M2CVD: Enhancing Vulnerability Semantic through Multi-Model Collaboration for Code Vulnerability Detection [52.4455893010468]
大規模言語モデル(LLM)は、コード理解において強力な能力を持つが、微調整コストとセマンティックアライメントの問題により、プロジェクト固有の最適化が制限される。
CodeBERTのようなコードモデルは微調整が容易であるが、複雑なコード言語から脆弱性のセマンティクスを学ぶことはしばしば困難である。
本稿では,M2CVD(Multi-Model Collaborative Vulnerability Detection)手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T00:05:49Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
大規模言語モデル(LLM)は、ユーザがクエリを入力し、LLMが回答を生成する、顕著な生成AIツールになりつつある。
害と誤用を減らすため、人間のフィードバックからの強化学習のような高度な訓練技術を用いて、これらのLLMを人間の価値に合わせる努力がなされている。
近年の研究では、組込み安全ガードレールを転覆させようとする敵のジェイルブレイクの試みに対するLLMの脆弱性を強調している。
本稿では,脱獄を検知するGradient Cuffという手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T03:29:54Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINERは、粗いレベルの脆弱なコードスニペットから脆弱性クリティカルなコード行を見つけるためのツールである。
C/C++の一般的な8つの脆弱性に対して、90%の精度で脆弱性をトリガするコードステートメントにフラグを付けることができる。
論文 参考訳(メタデータ) (2024-01-05T10:15:04Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。