論文の概要: GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory
- arxiv url: http://arxiv.org/abs/2406.11149v1
- Date: Mon, 17 Jun 2024 02:27:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 18:43:55.319311
- Title: GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory
- Title(参考訳): GoldCoin: コンテキスト整合性理論によるプライバシー法則の大規模言語モデル構築
- Authors: Wei Fan, Haoran Li, Zheye Deng, Weiqi Wang, Yangqiu Song,
- Abstract要約: これまでの研究では、さまざまなプライバシー攻撃、防御、評価を狭義に定義されたパターンの中で探索することで、プライバシを研究する。
我々は,プライバシ違反を評価する司法法において,LLMを効果的に活用するための新しい枠組みであるGoldCoinを紹介した。
我々のフレームワークは、コンテキスト整合性の理論をブリッジとして活用し、関連するプライバシー法に基づく多数の合成シナリオを作成する。
- 参考スコア(独自算出の注目度): 44.297102658873726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy issues arise prominently during the inappropriate transmission of information between entities. Existing research primarily studies privacy by exploring various privacy attacks, defenses, and evaluations within narrowly predefined patterns, while neglecting that privacy is not an isolated, context-free concept limited to traditionally sensitive data (e.g., social security numbers), but intertwined with intricate social contexts that complicate the identification and analysis of potential privacy violations. The advent of Large Language Models (LLMs) offers unprecedented opportunities for incorporating the nuanced scenarios outlined in privacy laws to tackle these complex privacy issues. However, the scarcity of open-source relevant case studies restricts the efficiency of LLMs in aligning with specific legal statutes. To address this challenge, we introduce a novel framework, GoldCoin, designed to efficiently ground LLMs in privacy laws for judicial assessing privacy violations. Our framework leverages the theory of contextual integrity as a bridge, creating numerous synthetic scenarios grounded in relevant privacy statutes (e.g., HIPAA), to assist LLMs in comprehending the complex contexts for identifying privacy risks in the real world. Extensive experimental results demonstrate that GoldCoin markedly enhances LLMs' capabilities in recognizing privacy risks across real court cases, surpassing the baselines on different judicial tasks.
- Abstract(参考訳): プライバシ問題は、エンティティ間の情報の不適切な送信中に顕著に発生する。
既存の研究は、様々なプライバシー攻撃、防衛、評価を狭義に定義されたパターンの中で探求し、プライバシーは伝統的に機密性の高いデータ(社会保障番号など)に限られる孤立した文脈のない概念ではなく、潜在的なプライバシー侵害の識別と分析を複雑化する複雑な社会的コンテキストに絡み合っていることを無視する。
LLM(Large Language Models)の出現は、これらの複雑なプライバシー問題に対処するために、プライバシー法で概説された曖昧なシナリオを取り入れる前例のない機会を提供する。
しかし、オープンソースに関するケーススタディの欠如は、特定の法規に適合するLLMの効率を制限している。
この課題に対処するため,我々は,プライバシー侵害を評価する司法法において,LLMを効果的に活用するための新しい枠組みであるGoldCoinを紹介した。
我々のフレームワークは、コンテキスト整合性の理論をブリッジとして活用し、関連するプライバシー規則(例えばHIPAA)に基づく多数の合成シナリオを作成し、LLMが現実世界のプライバシーリスクを特定する複雑なコンテキストを理解するのを支援する。
広範な実験結果から、ゴールドコインは、現実の裁判所におけるプライバシーリスクを認識し、異なる司法業務のベースラインを超越するLLMの能力を著しく向上することが示された。
関連論文リスト
- Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
強力なAIモデルによって、幅広いタスクでパフォーマンスが飛躍的に向上した。
プライバシの懸念は、さまざまなプライバシのリスクとAIモデルの脆弱性をカバーした、豊富な文献につながっている。
我々はこれらの調査論文の体系的なレビューを行い、GPAISにおけるプライバシーリスクの簡潔かつ有用な概観を提供する。
論文 参考訳(メタデータ) (2024-07-02T07:49:48Z) - Centering Policy and Practice: Research Gaps around Usable Differential Privacy [12.340264479496375]
我々は、差分プライバシーは理論上はクリーンな定式化であるが、実際は重大な課題を提起していると論じている。
差分プライバシーの約束と現実世界のユーザビリティのギャップを埋めるために、研究者と実践者は協力しなければなりません。
論文 参考訳(メタデータ) (2024-06-17T21:32:30Z) - No Free Lunch Theorem for Privacy-Preserving LLM Inference [30.554456047738295]
本研究では,プライバシ保護型大規模言語モデル(LLM)を推定するためのフレームワークを開発する。
プライバシー保護とユーティリティの相互作用を調べるための、しっかりとした理論的基盤を築いている。
論文 参考訳(メタデータ) (2024-05-31T08:22:53Z) - On Protecting the Data Privacy of Large Language Models (LLMs): A Survey [35.48984524483533]
LLM(Large Language Model)は、人間の言語を理解し、生成し、翻訳できる複雑な人工知能システムである。
LLMは大量のデータを処理して生成し、データプライバシを脅かす可能性がある。
論文 参考訳(メタデータ) (2024-03-08T08:47:48Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Privacy-Preserving In-Context Learning with Differentially Private
Few-Shot Generation [37.55812121348268]
プライベートデータセット上の大きな言語モデル(LLM)を備えたインコンテキスト学習(ICL)は、プライバシリスクを引き起こす。
本稿では,形式的な差分プライバシー保証付きプライベートデータセットから合成数発のデモを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-21T03:59:00Z) - A Critical Take on Privacy in a Datafied Society [0.0]
私は、プライバシー擁護者が提示するオンラインのプライバシーと慣用性の欠如について、いくつかの側面を分析します。
データフィケーションが人間の行動に与える影響、オンラインプライバシの基盤における市場志向の前提、そして新たな適応戦略について論じる。
潜在的な問題となる未来を垣間見るために、EU、英国、および中国のジェネレーティブAIポリシーに関するプライバシー関連の側面に関する議論が提供されている。
論文 参考訳(メタデータ) (2023-08-03T11:45:18Z) - Advancing Differential Privacy: Where We Are Now and Future Directions for Real-World Deployment [100.1798289103163]
差分プライバシ(DP)分野における現状と現状の方法論の詳細なレビューを行う。
論文のポイントとハイレベルな内容は,「認知プライバシ(DP:次のフロンティアへの挑戦)」の議論から生まれた。
この記事では、プライバシの領域におけるアルゴリズムおよび設計決定の基準点を提供することを目標とし、重要な課題と潜在的研究の方向性を強調します。
論文 参考訳(メタデータ) (2023-04-14T05:29:18Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。