論文の概要: A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression
- arxiv url: http://arxiv.org/abs/2406.11430v2
- Date: Sun, 3 Nov 2024 09:42:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:22:29.929174
- Title: A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression
- Title(参考訳): KVキャッシュ圧縮のためのシンプルで効果的な$L_2$ノルム戦略
- Authors: Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini,
- Abstract要約: キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
- 参考スコア(独自算出の注目度): 13.981807478365452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of large language models (LLMs) is often hindered by the extensive memory requirements of the Key-Value (KV) cache, especially as context lengths increase. Existing approaches to reduce the KV cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length. We analyse the attention distributions in decoder-only Transformers-based models and observe that attention allocation patterns stay consistent across most layers. Surprisingly, we find a clear correlation between the $L_2$ and the attention scores over cached KV pairs, where a low $L_2$ of a key embedding usually leads to a high attention score during decoding. This finding indicates that the influence of a KV pair is potentially determined by the key embedding itself before being queried. Based on this observation, we compress the KV cache based on the $L_2$ of key embeddings. Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy. Moreover, without relying on the attention scores, this approach remains compatible with FlashAttention, enabling broader applicability.
- Abstract(参考訳): 大規模言語モデル(LLM)の展開は、特にコンテキスト長の増加に伴ってキーバリュー(KV)キャッシュの広範なメモリ要求によって妨げられることが多い。
既存のKVキャッシュサイズを削減するアプローチでは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用する。
我々は,デコーダのみをベースとしたトランスフォーマーモデルにおけるアテンション分布を分析し,アテンションアロケーションパターンがほとんどの層で一定であることを確認する。
驚いたことに、キャッシュされたKVペアに対して、$L_2$とアテンションスコアとの間に明らかな相関関係がみられ、キー埋め込みの低い$L_2$がデコード時に高いアテンションスコアをもたらすのが普通である。
この結果から、KV対の影響は、クエリされる前にキー埋め込み自体によって決定される可能性が示唆された。
この観測に基づいて、キー埋め込みの$L_2$に基づいてKVキャッシュを圧縮する。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
さらに、注意点を頼らずに、このアプローチはFlashAttentionと互換性を持ち、より広範な適用性を実現する。
関連論文リスト
- KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Eigen Attention: Attention in Low-Rank Space for KV Cache Compression [9.080678336379528]
我々は,低ランク空間における注意操作を行うEigen Attentionを提案し,KVキャッシュメモリのオーバーヘッドを低減する。
その結果,Eigen AttentionはKVキャッシュサイズを最大40%削減し,注目動作遅延を最大60%低減し,性能の低下を最小化できることがわかった。
論文 参考訳(メタデータ) (2024-08-10T22:47:12Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Effectively Compress KV Heads for LLM [28.0801697946958]
キーバリュー(KV)キャッシュを圧縮する新しい手法を提案する。
提案手法は,従来のLLMに匹敵する性能を維持しつつ,KVヘッドの4分の1以上を圧縮することができる。
論文 参考訳(メタデータ) (2024-06-11T08:37:33Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。