論文の概要: Explainable Artificial Intelligence and Multicollinearity : A Mini Review of Current Approaches
- arxiv url: http://arxiv.org/abs/2406.11524v1
- Date: Mon, 17 Jun 2024 13:26:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 14:42:04.952662
- Title: Explainable Artificial Intelligence and Multicollinearity : A Mini Review of Current Approaches
- Title(参考訳): 説明可能な人工知能と多言語性 : 最近のアプローチのミニレビュー
- Authors: Ahmed M Salih,
- Abstract要約: 説明可能な人工知能(XAI)手法は、機械学習モデルの内部メカニズムを理解するのに役立つ。
情報的特徴のリストは、XAIメソッドの最も一般的な出力の1つである。
マルチコリニアリティは、XAIが説明を生成するときに考慮すべき大きな問題の1つです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) methods help to understand the internal mechanism of machine learning models and how they reach a specific decision or made a specific action. The list of informative features is one of the most common output of XAI methods. Multicollinearity is one of the big issue that should be considered when XAI generates the explanation in terms of the most informative features in an AI system. No review has been dedicated to investigate the current approaches to handle such significant issue. In this paper, we provide a review of the current state-of-the-art approaches in relation to the XAI in the context of recent advances in dealing with the multicollinearity issue. To do so, we searched in three repositories that are: Web of Science, Scopus and IEEE Xplore to find pertinent published papers. After excluding irrelevant papers, seven papers were considered in the review. In addition, we discuss the current XAI methods and their limitations in dealing with the multicollinearity and suggest future directions.
- Abstract(参考訳): 説明可能な人工知能(XAI)メソッドは、マシンラーニングモデルの内部メカニズムと、それが特定の決定に達する方法、あるいは特定のアクションを行う方法を理解するのに役立つ。
情報的特徴のリストは、XAIメソッドの最も一般的な出力の1つである。
マルチコリナリティは、XAIがAIシステムでもっとも有意義な機能の観点から説明を生成するときに考慮すべき大きな問題の1つです。
このような重大な問題に対処する現在のアプローチを調査するためのレビューは行われていない。
本稿では,近年の多言語問題への取り組みの進展を背景として,XAIに関する現在の最先端のアプローチを概観する。
そのために私たちは,Web of Science, Scopus, IEEE Xploreの3つのリポジトリを検索して,関連する論文を見つけました。
無関係な論文を除いた後、レビューでは7つの論文が検討された。
また,現在のXAI手法とその制約について考察し,今後の方向性を提案する。
関連論文リスト
- Explainable Generative AI (GenXAI): A Survey, Conceptualization, and Research Agenda [1.8592384822257952]
我々は、XAIがGenAIの台頭とともに重要になった理由とその説明可能性研究の課題について詳述する。
私たちはまた、検証可能性、対話性、セキュリティ、コストといった側面をカバーし、説明が満たすべき新しいデシラタも披露します。
論文 参考訳(メタデータ) (2024-04-15T08:18:16Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
ブラックボックスAIモデルの急増は、内部メカニズムを説明し、信頼性を正当化する必要性を喚起している。
勾配に基づく説明は、ニューラルネットワークモデルに直接適用することができる。
アルゴリズムの性能を測定するために,人的評価と定量的評価の両方を導入する。
論文 参考訳(メタデータ) (2024-03-15T15:49:31Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAIはLarge Language Models (LLM)に拡張されている
本稿では,XAIがLLMやAIシステムにどのようなメリットをもたらすかを分析する。
10の戦略を導入し、それぞれに重要なテクニックを導入し、関連する課題について議論します。
論文 参考訳(メタデータ) (2024-03-13T20:25:27Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote
Sensing [52.110707276938]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出のための主要なモデリングパラダイムとなっている。
我々は、リモートセンシングにおいて、説明可能なAIがどのように使われているかを示す重要なトレンドを特定するために、体系的なレビューを行う。
私たちは、新しい説明可能なAIアプローチと、特定のリモートセンシング課題に対処する新たな方向性に光を当てました。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Is Task-Agnostic Explainable AI a Myth? [0.0]
我々の研究は、現代の説明可能なAI(XAI)の課題を統一するための枠組みとして機能する。
我々は、XAI手法が機械学習モデルに補助的かつ潜在的に有用な出力を提供する一方で、研究者と意思決定者は、概念的および技術的な制限に留意すべきであることを示した。
本稿では,画像,テキスト,グラフデータにまたがる3つのXAI研究経路について検討する。
論文 参考訳(メタデータ) (2023-07-13T07:48:04Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - OmniXAI: A Library for Explainable AI [98.07381528393245]
eXplainable AI(XAI)のオープンソースPythonライブラリであるOmniXAIを紹介する。
オールニウェイで説明可能なAI機能と、さまざまな解釈可能な機械学習技術を提供する。
実践者にとってこのライブラリは、アプリケーションの説明を生成するために、使いやすく統合されたインターフェースを提供する。
論文 参考訳(メタデータ) (2022-06-01T11:35:37Z) - Explainable AI: current status and future directions [11.92436948211501]
説明可能な人工知能(XAI)は、人工知能(AI)分野における新たな研究分野である。
XAIは、AIが特定のソリューションをどのように取得したかを説明し、他の"wh"質問にも答えることができる。
本稿では,マルチメディア(テキスト,画像,音声,ビデオ)の観点から,これらの技術の概要を紹介する。
論文 参考訳(メタデータ) (2021-07-12T08:42:19Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
解釈可能な機械学習(IML)は研究の緊急のトピックである。
本稿では,テキストデータと時系列データに適用される局所的,神経特異的な解釈プロセスに焦点を当てる。
論文 参考訳(メタデータ) (2021-04-13T09:39:33Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。